Kernel in Oriented Circulant Graphs

被引:0
|
作者
Manuel, Paul [1 ]
Rajasingh, Indra [2 ]
Rajan, Bharati [2 ]
Punitha, Joice [3 ]
机构
[1] Kuwait Univ, Dept Informat Sci, Kuwait 13060, Kuwait
[2] Loyola Coll, Dept Math, Madras 600034, Tamil Nadu, India
[3] R M D Engn Coll, Dept Math, Kavaraipettai 601206, India
来源
COMBINATORIAL ALGORITHMS | 2009年 / 5874卷
关键词
oriented graph; kernel; strong kernel number; NP-complete; strongly connected;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A kernel in a directed graph D(V, E) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in V \ S there is a vertex v in S such that (a, v) is an arc of D. The problem of existence of a kernel is NP-complete for a general digraph. In this paper we introduce the strong kernel problem of an undirected graph G and solve it in polynomial time for circulant graphs.
引用
收藏
页码:396 / +
页数:2
相关论文
共 50 条
  • [21] On the cyclic decomposition of circulant graphs into bipartite graphs
    Bunge, Ryan C.
    El-Zanati, Saad I.
    Rumsey, Chepina
    Eynden, Charles Vanden
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 201 - 217
  • [22] Restricted triangulation on circulant graphs
    Ali, Niran Abbas
    Kilicman, Adem
    Trao, Hazim Michman
    OPEN MATHEMATICS, 2018, 16 : 358 - 369
  • [23] Splines and wavelets on circulant graphs
    Kotzagiannidis, M. S.
    Dragotti, P. L.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) : 481 - 515
  • [24] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [25] The Metric Dimension of Circulant Graphs
    Vetrik, Tomas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 206 - 216
  • [26] The irregularity strength of circulant graphs
    Baril, JL
    Kheddouci, H
    Togni, O
    DISCRETE MATHEMATICS, 2005, 304 (1-3) : 1 - 10
  • [27] 4-circulant graphs
    Davis, GJ
    Domke, GS
    Garner, CR
    ARS COMBINATORIA, 2002, 65 : 97 - 110
  • [28] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [29] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [30] Star extremal circulant graphs
    Lih, KW
    Liu, DDF
    Zhu, XD
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (04) : 491 - 499