Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

被引:204
|
作者
Maspero, Matteo [1 ,2 ,3 ]
Savenije, Mark H. F. [1 ,2 ]
Dinkla, Anna M. [1 ,2 ]
Seevinck, Peter R. [2 ,3 ]
Intven, Martijn P. W. [1 ]
Jurgenliemk-Schulz, Ina M. [1 ]
Kerkmeijer, Linda G. W. [1 ]
van den Berg, Cornelis A. T. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Ctr Image Sci, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2018年 / 63卷 / 18期
关键词
magnetic resonance imaging; cancer; dose calculations; generative adversarial network; medical imaging; neural network; pseudo-CT; COMPUTED-TOMOGRAPHY GENERATION; DEFORMABLE IMAGE REGISTRATION; BEAM RADIATION-THERAPY; FEASIBILITY; SIMULATION; DISTORTION; TIME;
D O I
10.1088/1361-6560/aada6d
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than +/- 2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A study of Bayesian deep network uncertainty and its application to synthetic CT generation for MR-only radiotherapy treatment planning
    Law, Max Wai-Kong
    Tse, Mei-Yan
    Ho, Leon Chin-Chak
    Lau, Ka-Ki
    Wong, Oi Lei
    Yuan, Jing
    Cheung, Kin Yin
    Yu, Siu Ki
    MEDICAL PHYSICS, 2024, 51 (02) : 1244 - 1262
  • [22] Dosimetric Evaluation of Multi-sequence MR Image-based Synthetic CT Generation for Head and Neck MR-only Radiotherapy
    Li, Y.
    Qi, M.
    Wu, A.
    Zhou, L.
    Deng, X.
    Song, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E291 - E292
  • [23] Synthetic CT Generation Using Structure-Aware Generative Adversarial Networks (SA-GANs) for Pelvis Magnetic Resonance-Only Radiotherapy
    Emami, H.
    Dong, M.
    Nejad-Davarani, S.
    Glide-Hurst, C.
    MEDICAL PHYSICS, 2020, 47 (06) : E279 - E279
  • [24] Synthetic CT Generation of the Pelvis in Patients With Cervical Cancer: A Single Input Approach Using Generative Adversarial Network
    Baydoun, Atallah
    Xu, Ke
    Heo, Jin Uk
    Yang, Huan
    Zhou, Feifei
    Bethell, Latoya A.
    Fredman, Elisha T.
    Ellis, Rodney J.
    Podder, Tarun K.
    Traughber, Melanie S.
    Paspulati, Raj M.
    Qian, Pengjiang
    Traughber, Bryan J.
    Muzic, Raymond F., Jr.
    IEEE ACCESS, 2021, 9 : 17208 - 17221
  • [25] Evaluation of a synthetic-CT generation method for MRI-only head and neck cancer radiotherapy
    Riga, S.
    Carsana, C.
    Felisi, M.
    Sibio, D.
    Monti, A. F.
    Lizio, D.
    Pellegrini, R. G.
    Curto, D.
    Muti, G.
    Maigualca, O. E. Panchi
    Bortolato, B.
    Bracco, F.
    Vanzulli, A.
    Palazzi, M.
    Torresin, A.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S281 - S283
  • [26] Patient specific quality assurance for synthetic CT in MR-only radiotherapy of the abdomen
    Dal Bello, R.
    Lapaeva, M.
    Agustina, A.
    Wallimann, P.
    Gunther, M.
    Konukoglu, E.
    Andratschke, N.
    Guckenberger, M.
    Tanadini-Lang, S.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S74 - S75
  • [27] Results of the ESTRO 2023 survey on the use of synthetic CT in MR-only radiotherapy
    Fusella, Marco
    Cusumano, Davide
    Alvarez-Andres, Emilie
    Dal Bello, Riccardo
    Dhont, Jennifer
    Garibaldi, Cristina
    Villegas, Fernanda
    Placidi, Lorenzo
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3801 - S3803
  • [28] A Dixon Based Pseudo-CT Generation Method for MR-Only Radiotherapy Treatment Planning of the Pelvis and Head and Neck
    Maspero, M.
    Seevinck, P. R.
    Meijer, G. J.
    Lagendijk, J. J. W.
    Viergever, M. A.
    van den Berg, C. A. T.
    MEDICAL PHYSICS, 2015, 42 (06) : 3316 - 3316
  • [29] A combined automatic MR OAR contouring and synthetic CT solution for prostate MR-only radiotherapy
    Wyatt, Jonathan J.
    Kaushik, Sandeep
    Cozzini, Cristina
    Kolozsvari, Bernadett
    Deak-Karancsi, Borbala
    Pearson, Rachel A.
    Petit, Steven
    Capala, Marta
    Hernandez-Tamames, Juan A.
    Hideghety, Katalin
    Maxwell, Ross J.
    Rusko, Laszlo
    Wiesinger, Florian
    McCallum, Hazel M.
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3144 - S3147
  • [30] Dosimetric Evaluation of Magnetic Resonance-Generated Synthetic CT for MR-Only Rectal Cancer Radiotherapy
    Wang, H.
    Du, K.
    Qu, J.
    Chandarana, H.
    Das, I.
    MEDICAL PHYSICS, 2017, 44 (06)