Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy

被引:204
|
作者
Maspero, Matteo [1 ,2 ,3 ]
Savenije, Mark H. F. [1 ,2 ]
Dinkla, Anna M. [1 ,2 ]
Seevinck, Peter R. [2 ,3 ]
Intven, Martijn P. W. [1 ]
Jurgenliemk-Schulz, Ina M. [1 ]
Kerkmeijer, Linda G. W. [1 ]
van den Berg, Cornelis A. T. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Ctr Image Sci, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2018年 / 63卷 / 18期
关键词
magnetic resonance imaging; cancer; dose calculations; generative adversarial network; medical imaging; neural network; pseudo-CT; COMPUTED-TOMOGRAPHY GENERATION; DEFORMABLE IMAGE REGISTRATION; BEAM RADIATION-THERAPY; FEASIBILITY; SIMULATION; DISTORTION; TIME;
D O I
10.1088/1361-6560/aada6d
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than +/- 2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MR-Based Synthetic-CT Generation Using Generative Adversarial Network for Head and Neck MR-Only Radiotherapy
    Qi, M.
    Li, Y.
    Wu, A.
    Guo, F.
    Jia, Q.
    Zhou, L.
    Song, T.
    MEDICAL PHYSICS, 2019, 46 (06) : E112 - E112
  • [2] Abdominal Synthetic CT Generation for MR-Only Liver Radiotherapy Using Conditional Generative Adversarial Network
    Fu, J.
    Santhanam, A.
    Cao, M.
    Guo, M.
    Singhrao, K.
    Yu, V.
    Ruan, D.
    Low, D.
    Lewis, J.
    MEDICAL PHYSICS, 2018, 45 (06) : E701 - E701
  • [3] Dosimetric evaluation of deep learning based synthetic-CT generation for MR-only brain radiotherapy
    Dinkla, A. M.
    Wolterink, J. M.
    Maspero, M.
    Savenije, M. H. F.
    Verhoeff, J. J. C.
    Isgum, I.
    Seevinck, P. R.
    Lagendijk, J. J. W.
    Van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S151 - S151
  • [4] Bony structure enhanced synthetic CT generation using Dixon sequences for pelvis MR-only radiotherapy
    Liang, Xiao
    Yen, Allen
    Bai, Ti
    Godley, Andrew
    Shen, Chenyang
    Wu, Junjie
    Meng, Boyu
    Lin, Mu-Han
    Medin, Paul
    Yan, Yulong
    Owrangi, Amir
    Desai, Neil
    Hannan, Raquibul
    Garant, Aurelie
    Jiang, Steve
    Deng, Jie
    MEDICAL PHYSICS, 2023, 50 (12) : 7368 - 7382
  • [5] Evaluation of a DL based synthetic CT algorithm for pelvis and brain MR-Only radiotherapy
    Badey, Aurelien
    Jaegle, Enric
    Biarnes, Maria-Elena Alayrach
    Martinez, Paul
    Lauzin, Yann
    Mazars, Pauline
    Zinutti, Marianne
    Saadi, Oussama
    Le Brun, Hugo
    Bodez, Veronique
    Vieillevigne, Laure
    Khamphan, Catherine
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3961 - S3963
  • [6] Evaluation of Synthetic CT Image Generated Using a Neural Network for MR-Only Radiotherapy
    Tang, B.
    Fan, W.
    Wang, X.
    Li, J.
    Wang, P.
    Kang, S.
    Xiao, M.
    Orlandini, L. C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E296 - E297
  • [7] Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy
    Farjam, Reza
    Tyag, Neelam
    Deasy, Joseph O.
    Hun, Margie A.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (01): : 101 - 109
  • [8] Dosimetric Evaluation of Synthetic-CT Generated by Multi-Sequence MR Images for Head and Neck MR-Only Radiotherapy
    Qi, M.
    Li, Y.
    Wu, A.
    Lu, X.
    Liu, Y.
    Zhou, L.
    Song, T.
    MEDICAL PHYSICS, 2020, 47 (06) : E269 - E269
  • [9] Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning
    Bird, David
    Nix, Michael G.
    McCallum, Hazel
    Teo, Mark
    Gilbert, Alexandra
    Casanova, Nathalie
    Cooper, Rachel
    Buckley, David L.
    Sebag-Montefiore, David
    Speight, Richard
    Al-Qaisieh, Bashar
    Henry, Ann M.
    RADIOTHERAPY AND ONCOLOGY, 2021, 156 : 23 - 28
  • [10] Unsupervised AutoConfidence estimation for deep-learning synthetic-CT in MR-only liver radiotherapy
    Nix, M.
    Bird, D.
    Tyyger, M.
    Al-Qaisieh, B.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S584 - S585