Boundary Layer via Multifractal Mass Conductivity through Remote Sensing Data in Atmospheric Dynamics

被引:2
|
作者
Nica, Dragos-Constantin [1 ]
Cazacu, Marius-Mihai [2 ]
Constantin, Daniel-Eduard [3 ]
Nedeff, Valentin [4 ]
Nedeff, Florin [5 ]
Vasincu, Decebal [6 ]
Rosu, Iulian-Alin [2 ,7 ]
Agop, Maricel [2 ,8 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Geog & Geol, Dept Geog, Iasi 700505, Romania
[2] Gheorghe Asachi Tech Univ Iasi, Dept Phys, Iasi 700050, Romania
[3] Dunarea de Jos Univ Galati, Fac Sci & Environm, Galati 800008, Romania
[4] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Ind Syst Engn & Management, Bacau 600115, Romania
[5] Vasile Alecsandri Univ Bacau, Fac Engn, Dept Environm Engn & Mech Engn, Bacau 600115, Romania
[6] Grigore T Popa Univ Med & Pharm, Fac Dent Med, Dept Biophys, Iasi 700115, Romania
[7] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[8] Romanian Scientists Acad, Bucharest 010071, Romania
基金
芬兰科学院;
关键词
atmosphere; multifractal; conductivity; ceilometer;
D O I
10.3390/fractalfract6050250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, multifractal theories of motion based on scale relativity theory are considered in the description of atmospheric dynamics. It is shown that these theories have the potential to highlight nondimensional mass conduction laws that describe the propagation of atmospheric entities. Then, using special operational procedures and harmonic mappings, these equations can be rewritten and simplified for their plotting and analysis to be performed. The inhomogeneity of these conduction phenomena is analyzed, and it is found that it can fluctuate and increase at certain fractal dimensions, leading to the conclusion that certain atmospheric structures and phenomena of either atmospheric transmission or stability can be explained by atmospheric fractal dimension inversions. Finally, this hypothesis is verified using ceilometer data throughout the atmospheric profiles.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] “Surface-Based Remote Sensing of the Atmospheric Boundary Layer” by Stefan EmeisSpringer, 2011
    J. F. Barlow
    Boundary-Layer Meteorology, 2011, 141 (3) : 469 - 471
  • [22] REMOTE-SENSING OF ATMOSPHERIC AEROSOL IN THE NOCTURNAL BOUNDARY-LAYER USING LIDAR
    DEVARA, PCS
    RAJ, PE
    SHARMA, S
    ENVIRONMENTAL POLLUTION, 1994, 85 (01) : 97 - 102
  • [23] The thermal structure of the atmospheric boundary layer in an alpine valley: Results of continuous remote sensing measurements and comparison with radiosonde data
    Kadygrov, E
    Kadygrov, V
    Miller, E
    Weber, H
    Rotach, MW
    IRS 2000: CURRENT PROBLEMS IN ATMOSPHERIC RADIATION, 2001, : 1097 - 1100
  • [24] REMOTE-SENSING OF MASS FLUXES OF TRACE GASES IN THE BOUNDARY-LAYER
    WERNER, C
    HAUS, R
    KOPP, F
    SCHAFER, K
    APPLIED PHYSICS B-LASERS AND OPTICS, 1995, 61 (03): : 249 - 251
  • [25] Microwave radar remote of atmospheric boundary layer
    Weng, NQ
    Liu, XQ
    MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT, 1998, 3503 : 334 - 339
  • [26] REMOTE SENSING OF TEMPERATURE PROFILES IN THE BOUNDARY LAYER
    刘长盛
    Advances in Atmospheric Sciences, 1988, (01) : 67 - 73
  • [27] Laser remote sensing of the planetary boundary layer
    Bösenberg, J
    Linné, H
    METEOROLOGISCHE ZEITSCHRIFT, 2002, 11 (04) : 233 - 240
  • [28] REMOTE SENSING OF STABLE BOUNDARY LAYER OF ATMOSPHERE
    Banakh, V. A.
    Smalikho, I. N.
    Fafits, A., V
    29TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 29), 2020, 237
  • [29] Remote sensing of atmospheric radiation and dynamics PREFACE
    Cracknell, Arthur P.
    Varotsos, Costas A.
    Timofeyev, Yuri M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (15) : 5563 - 5565
  • [30] Vertical distribution of aerosol mass concentration in the atmospheric boundary layer above the Atlantic Ocean from lidar sensing data
    V. S. Shamanaev
    G. P. Kokhanenko
    Russian Physics Journal, 2013, 56 : 269 - 272