New definitions of the generalized Stirling numbers

被引:8
|
作者
Maltenfort, Michael [1 ]
机构
[1] Northwestern Univ, 1908 Sheridan Rd, Evanston, IL 60208 USA
关键词
Generalized Stirling numbers; r-Whitney numbers; Stirling numbers; R-WHITNEY NUMBERS; IDENTITIES;
D O I
10.1007/s00010-019-00685-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new combinatorial and algebraic definitions for the generalized Stirling numbers of Hsu and Shiue, and we use the interplay between these definitions to extend existing identities and discover new ones. We also explore how some of these results specialize to new identities of r-Whitney numbers.
引用
收藏
页码:169 / 200
页数:32
相关论文
共 50 条
  • [21] Combinatorial Interpretation of Generalized Stirling Numbers
    Lang, Wolfdieter
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (03)
  • [22] Expression and computation of generalized stirling numbers
    He, Tian-Xiao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2013, 86 : 239 - 268
  • [23] Convolution Properties of the Generalized Stirling Numbers and the Jacobi-Stirling Numbers of the First Kind
    Pan, Jiaqiang
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (09)
  • [24] Occupancy Problems Related to the Generalized Stirling Numbers
    Huillet, Thierry E.
    JOURNAL OF STATISTICAL PHYSICS, 2023, 191 (01)
  • [25] A generalized summation rule related to Stirling numbers
    Zhao, YQ
    Ding, SS
    FIBONACCI QUARTERLY, 2004, 42 (03): : 194 - 201
  • [26] Touchard like polynomials and generalized Stirling numbers
    Dattoli, G.
    Germano, B.
    Martinelli, M. R.
    Ricci, P. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) : 6661 - 6665
  • [27] A q-analogue of generalized Stirling numbers
    Corcino, Roberto B.
    Hsu, Leetsch Charles
    Tan, Evelyn L.
    FIBONACCI QUARTERLY, 2006, 44 (02): : 154 - 165
  • [28] POWER SUM IDENTITIES WITH GENERALIZED STIRLING NUMBERS
    Boyadzhiev, Khristo N.
    FIBONACCI QUARTERLY, 2008, 46-47 (04): : 326 - 330
  • [29] Occupancy Problems Related to the Generalized Stirling Numbers
    Thierry E. Huillet
    Journal of Statistical Physics, 191
  • [30] A Newton Interpolation Approach to Generalized Stirling Numbers
    Xu, Aimin
    JOURNAL OF APPLIED MATHEMATICS, 2012,