Deep learning with coherent nanophotonic circuits

被引:0
|
作者
Shen, Yichen [1 ]
Harris, Nicholas C. [1 ]
Skirlo, Scott [1 ]
Prabhu, Mihika [1 ]
Baehr-Jones, Tom [2 ]
Hochberg, Michael [2 ]
Sun, Xin [3 ]
Zhao, Shijie [4 ]
Larochelle, Hugo [5 ]
Englund, Dirk [1 ]
Soljacic, Marin [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Elenion, 171 Madison Ave,Suite 1100, New York, NY 10016 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Univ Sherbrooke, Adm, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada
基金
美国国家科学基金会;
关键词
NEURAL-NETWORKS; PHOTONIC CRYSTALS; IMPLEMENTATION; BISTABILITY; EFFICIENT;
D O I
10.1038/NPHOTON.2017.93
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.
引用
收藏
页码:441 / +
页数:7
相关论文
共 50 条
  • [31] Deep learning with coherent VCSEL neural networks
    Zaijun Chen
    Alexander Sludds
    Ronald Davis
    Ian Christen
    Liane Bernstein
    Lamia Ateshian
    Tobias Heuser
    Niels Heermeier
    James A. Lott
    Stephan Reitzenstein
    Ryan Hamerly
    Dirk Englund
    Nature Photonics, 2023, 17 : 723 - 730
  • [32] Benchmarking deep learning-based models on nanophotonic inverse design problems
    Taigao Ma
    Mustafa Tobah
    Haozhu Wang
    L.Jay Guo
    Opto-Electronic Science, 2022, 1 (01) : 29 - 43
  • [33] Deep learning with coherent VCSEL neural networks
    Chen, Zaijun
    Sludds, Alexander
    Davis III, Ronald
    Christen, Ian
    Bernstein, Liane
    Ateshian, Lamia
    Heuser, Tobias
    Heermeier, Niels
    Lott, James A.
    Reitzenstein, Stephan
    Hamerly, Ryan
    Englund, Dirk
    NATURE PHOTONICS, 2023, 17 (08) : 723 - +
  • [34] Variational Quantum Circuits for Deep Reinforcement Learning
    Chen, Samuel Yen-Chi
    Yang, Chao-Han Huck
    Qi, Jun
    Chen, Pin-Yu
    Ma, Xiaoli
    Goan, Hsi-Sheng
    IEEE ACCESS, 2020, 8 (08): : 141007 - 141024
  • [35] Learning to Extract Coherent Summary via Deep Reinforcement Learning
    Wu, Yuxiang
    Hu, Baotian
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5602 - 5609
  • [36] Broadband directional coupling in aluminum nitride nanophotonic circuits
    Stegmaier, Matthias
    Pernice, Wolfram H. P.
    OPTICS EXPRESS, 2013, 21 (06): : 7304 - 7315
  • [37] Quantum circuits with many photons on a programmable nanophotonic chip
    Arrazola, J. M.
    Bergholm, V
    Bradler, K.
    Bromley, T. R.
    Collins, M. J.
    Dhand, I
    Fumagalli, A.
    Gerrits, T.
    Goussev, A.
    Helt, L. G.
    Hundal, J.
    Isacsson, T.
    Israel, R. B.
    Izaac, J.
    Jahangiri, S.
    Janik, R.
    Killoran, N.
    Kumar, S. P.
    Lavoie, J.
    Lita, A. E.
    Mahler, D. H.
    Menotti, M.
    Morrison, B.
    Nam, S. W.
    Neuhaus, L.
    Qi, H. Y.
    Quesada, N.
    Repingon, A.
    Sabapathy, K. K.
    Schuld, M.
    Su, D.
    Swinarton, J.
    Szava, A.
    Tan, K.
    Tan, P.
    Vaidya, V. D.
    Vernon, Z.
    Zabaneh, Z.
    Zhang, Y.
    NATURE, 2021, 591 (7848) : 54 - +
  • [38] Wavelength Controllable Forward Prediction and Inverse Design of Nanophotonic Devices Using Deep Learning
    Song, Yuchen
    Wang, Danshi
    Ye, Han
    Qin, Jun
    Zhang, Min
    2020 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS (ECOC), 2020,
  • [39] A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces
    Abhishek Mall
    Abhijeet Patil
    Amit Sethi
    Anshuman Kumar
    Scientific Reports, 10
  • [40] Deep Learning Reveals Underlying Physics of Light-Matter Interactions in Nanophotonic Devices
    Kiarashinejad, Yashar
    Abdollahramezani, Sajjad
    Zandehshahvar, Mohammadreza
    Hemmatyar, Omid
    Adibi, Ali
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (09)