Vibration-based gearbox fault diagnosis using deep neural networks

被引:23
|
作者
Chen, Zhiqiang [1 ,2 ]
Chen, Xudong [1 ,2 ]
Li, Chuan [1 ,2 ]
Sanchez, Rene-Vinicio [3 ]
Qin, Huafeng [1 ,2 ]
机构
[1] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Engn Lab Detect Control & Integrated Sy, Chongqing, Peoples R China
[3] Univ Politecn Salesiana, Dept Mech Engn, Cuenca, Ecuador
基金
中国国家自然科学基金;
关键词
deep learning; neural network; gearbox; fault diagnosis; vibration signal; FAILURE;
D O I
10.21595/jve.2016.17267
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Vibration-based analysis is the most commonly used technique to monitor the condition of gearboxes. Accurate classification of these vibration signals collected from gearbox is helpful for the gearbox fault diagnosis. In recent years, deep neural networks are becoming a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. In this paper, a study of deep neural networks for fault diagnosis in gearbox is presented. Four classic deep neural networks (Auto-encoders, Restricted Boltzmann Machines, Deep Boltzmann Machines and Deep Belief Networks) are employed as the classifier to classify and identify the fault conditions of gearbox. To sufficiently validate the deep neural networks diagnosis system is highly effective and reliable, herein three types of data sets based on the health condition of two rotating mechanical systems are prepared and tested. Each signal obtained includes the information of several basic gear or bearing faults. Totally 62 data sets are used to test and train the proposed gearbox diagnosis systems. Corresponding to each vibration signal, 256 features from both time and frequency domain are selected as input parameters for deep neural networks. The accuracy achieved indicates that the presented deep neural networks are highly reliable and effective in fault diagnosis of gearbox.
引用
收藏
页码:2475 / 2496
页数:22
相关论文
共 50 条
  • [31] On fault diagnosis using image-based deep learning networks based on vibration signals
    Ren, Zhenxing
    Guo, Jianfeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44555 - 44580
  • [32] A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis
    Liu, Guifang
    Bao, Huaiqian
    Han, Baokun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [33] Fault Diagnosis For Gearbox Based On Deep Belief Network
    Yang, Wang
    Zheng, Taisheng
    Li, Zhenxiang
    Yu, Dequan
    Wu, Wenbo
    Fu, Hongyong
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [34] GEARBOX FAULT DIAGNOSIS OPTIMIZATION USING CONVENTIONAL NEURAL NETWORKS AND MACHINE LEARNING METHODS
    Zakaria M.
    Elias H.A.
    Mounira D.
    International Journal of Mechatronics and Applied Mechanics, 2022, 12 : 41 - 46
  • [35] A Vibration-based Fault Diagnostics Technique for the Planetary Gearbox of Wind Turbines Considering Characteristics of Vibration Modulation
    Ha, Jong M.
    Park, Jungho
    Oh, Hyunsoek
    Youn, Byeng D.
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2015, 39 (07) : 665 - 671
  • [36] Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach
    Jiang, Guoqian
    Zhao, Jingyi
    Jia, Chenling
    He, Qun
    Xie, Ping
    Meng, Zong
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [37] Fault Diagnosis Method of Wind Turbine Gearbox Based on Deep Belief Network and Vibration Signal
    Liu Xiuli
    Zhang Xueying
    Wang Liyong
    2018 57TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2018, : 1699 - 1704
  • [38] Gearbox Fault Diagnosis Using Vibration and Current Information Fusion
    Peng, Yayu
    Qiao, Wei
    Qu, Liyan
    Wang, Jun
    2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016,
  • [39] Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks
    Cao, Jianhui
    Zhang, Jianjie
    Jiao, Xinze
    Yu, Peibo
    Zhang, Baobao
    SENSORS, 2024, 24 (14)
  • [40] A Gearbox Fault Diagnosis Method Based on Graph Neural Networks and Markov Transform Fields
    Wang, Haitao
    Liu, Zelin
    Li, Mingjun
    Dai, Xiyang
    Wang, Ruihua
    Shi, Lichen
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 25186 - 25196