Discontinuous Galerkin methods for the linear Schrodinger equation in non-cylindrical domains

被引:14
|
作者
Antonopoulou, D. C. [1 ,2 ]
Plexousakis, M. [1 ,2 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Crete, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Crete, Greece
关键词
PARABOLIC EQUATION; FINITE-ELEMENTS; TIME; SPACE;
D O I
10.1007/s00211-010-0296-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence of a discontinuous Galerkin method for the linear Schrodinger equation in non-cylindrical domains of R-m, m >= 1, is analyzed in this paper. We show the existence of the resulting approximations and prove stability and error estimates in finite element spaces of general type. When m = 1 the resulting problem is related to the standard narrow angle 'parabolic' approximation of the Helmholtz equation, as it appears in underwater acoustics. In this case we investigate theoretically and numerically the order of convergence using finite element spaces of piecewise polynomial functions.
引用
收藏
页码:585 / 608
页数:24
相关论文
共 50 条
  • [31] Stability of degenerate heat equation in non-cylindrical/cylindrical domain
    Gao, Hang
    Li, Lingfei
    Liu, Zhuangyi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [32] NAVIER-STOKES EQUATIONS IN NON-CYLINDRICAL DOMAINS
    BOCK, DN
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (02) : 151 - 162
  • [33] DISSIPATIVE BOUSSINESQ EQUATIONS ON NON-CYLINDRICAL DOMAINS IN Rn
    Clark, Haroldo R.
    Cousin, Alfredo T.
    Frota, Cicero L.
    Limaco, Juan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [34] Weak solutions of parabolic equations in non-cylindrical domains
    Brown, RM
    Hu, W
    Lieberman, GM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1785 - 1792
  • [35] Mass preserving discontinuous Galerkin methods for Schrodinger equations
    Lu, Wenying
    Huang, Yunqing
    Liu, Hailiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 210 - 226
  • [36] Local discontinuous Galerkin methods for nonlinear Schrodinger equations
    Xu, Y
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) : 72 - 97
  • [37] An existence result for evolution equations in non-cylindrical domains
    Paronetto, Fabio
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (06): : 1723 - 1740
  • [38] An extension of Rothe’s method to non-cylindrical domains
    Komil Kuliev
    Lars-Erik Persson
    Applications of Mathematics, 2007, 52 : 365 - 389
  • [40] DYNAMICS FOR THE COMPLEX GINZBURG-LANDAU EQUATION ON NON-CYLINDRICAL DOMAINS I: THE DIFFEOMORPHISM CASE
    Zhou, Feng
    Sun, Chunyou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3767 - 3792