Isomorphic random subspaces and quotients of convex and quasi-convex bodies

被引:0
|
作者
Litvak, AE [1 ]
Milman, VD [1 ]
Tomczak-Jaegermann, N [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the results of [LMT] to the non-symmetric and quasi-convex cases. Namely, we consider a finite-dimensional space endowed with the gauge of either a closed convex body (not necessarily symmetric) or a closed symmetric quasi-convex body. We show that if a generic subspace of some fixed proportional dimension of one such space is isomorphic: to a generic quotient of some proportional dimension of another space then for any proportion arbitrarily close to 1, the first space has a lot of Euclidean subspaces and the second space has a lot of Euclidean quotients.
引用
收藏
页码:159 / 178
页数:20
相关论文
共 50 条
  • [41] LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS
    MALY, J
    MANUSCRIPTA MATHEMATICA, 1994, 85 (3-4) : 419 - 428
  • [42] Quasi-convex punctions in carnot groups
    Sun, Mingbao
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (02) : 235 - 242
  • [43] A Practical Approach to Quasi-convex Optimization
    Dhompongsa, Sompong
    Kumam, Poom
    Khammahawong, Konrawut
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1641 - 1647
  • [44] CENTRAL SECTIONS IN QUASI-CONVEX PROGRAMMING
    ENCHEVA, TI
    LEVIN, AI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (11): : 39 - 42
  • [45] TRANSFORMATIONS OF QUASI-CONVEX PROGRAMMING PROBLEMS
    MANAS, M
    EKONOMICKO-MATEMATICKY OBZOR, 1968, 4 (01): : 93 - 99
  • [46] QUASI-CONVEX FUNCTIONS OF HIGHER ORDER
    Mrowiec, Jacek
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1335 - 1354
  • [47] On Generalizations of the Frank-Wolfe Theorem to Convex and Quasi-Convex Programmes
    Wiesława T. Obuchowska
    Computational Optimization and Applications, 2006, 33 : 349 - 364
  • [48] Globally optimal solutions to vision using convex and quasi-convex optimization
    Hartley, Richard
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 15 - 15
  • [49] On generalizations of the Frank-Wolfe theorem to convex and quasi-convex programmes
    Obuchowska, WT
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 33 (2-3) : 349 - 364
  • [50] Duality of locally quasi-convex convergence groups
    Sharma, Pranav
    APPLIED GENERAL TOPOLOGY, 2021, 22 (01): : 193 - 198