Upper Bound of Second Hankel Determinant for A Subclass of Bi-Univalent Functions

被引:1
|
作者
Caglar, Murat [1 ]
Erdagi, Eren Yavuz [1 ]
Deniz, Erhan [1 ]
机构
[1] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
D O I
10.1063/1.4981657
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we investigate a subclass Sigma(gamma,T) of analytic and bi-univalent functions in the open unit disk U. For functions belonging to this subclass, we obtain an upper bound for the second Hankel determinant H-2(2).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator
    Al-Shbeil, Isra
    Shaba, Timilehin Gideon
    Catas, Adriana
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [22] Upper Bound of Second Hankel Determinants for Certain Subclasses of Bi-univalent Functions Using Subordination
    Laxmi, K. Rajya
    Sharma, R. Bharavi
    Priya, M. Hari
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [23] The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain
    Srivastava, Hari Mohan
    Murugusundaramoorthy, Gangadharan
    Bulboaca, Teodor
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [24] The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain
    Hari Mohan Srivastava
    Gangadharan Murugusundaramoorthy
    Teodor Bulboacă
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [25] SECOND HANKEL DETERMINANT FOR BI-UNIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH HOHLOV OPERATOR
    Murugusundaramoorthy, G.
    Vijaya, K.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2015, 8 (01): : 22 - 29
  • [26] An upper bound to the second Hankel determinant for a new class of univalent functions
    Shrigan, Mallikarjun G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (05)
  • [27] Fekete-Szego problem and Second Hankel Determinant for a class of bi-univalent functions
    Magesh, N.
    Yamini, J.
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (01): : 141 - 157
  • [28] Second Hankel Determinant for Bi-univalent Functions Associated with q-differential Operator
    Shrigan, Mallikarjun G.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (05): : 663 - 671
  • [29] Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)
  • [30] Second Hankel Determinant of Certain Subclasses of Bi-univalent Functions by Means of Differential Subordination
    Laxmi, K. Rajya
    Sharma, R. Bharavi
    RECENT DEVELOPMENTS IN MATHEMATICAL ANALYSIS AND COMPUTING, 2019, 2095