Explicit factorization of x1lm1l2m2l3m3 - a and a-constacyclic codes over a finite field

被引:0
|
作者
Rakphon, Supakarn [1 ]
Chongchitmate, Wutichai [1 ]
Phuto, Jirayu [2 ]
Klin-eam, Chakkrid [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok, Thailand
[2] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok, Thailand
关键词
Constacyclic codes; cyclotomic coset; generator polynomials; irreducible factor polynomials;
D O I
10.1080/00927872.2022.2072854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of order q, t be a prime and m(1), m(2), m(3) be positive integers. In this article, we find all irreducible divisors of x(1)(lm1l2m2l3m3) - a over F-q where a is an element of F-q* and q(t) - 1 = l(1)(V1)l(2)(V2)l(3)(V3) c such that l(1), l(2), l(3) are distinct odd primes and c is a positive integer with gcd(l(1) l(2) l(3), c) = 1 and gcd(l(1)l(2)l(3), q(q - 1)) = 1. Moreover, we construct an a-constacyclic code by using these irreducible divisors.
引用
收藏
页码:4725 / 4745
页数:21
相关论文
共 50 条