A new refinement of the arithmetic mean-geometric mean inequality

被引:19
|
作者
Alzer, H
机构
[1] Waldbröl, 51545
关键词
D O I
10.1216/rmjm/1181071887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:663 / 667
页数:5
相关论文
共 50 条
  • [21] ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    Sababheh, Mohammad
    Furuichi, Shigeru
    Heydarbeygi, Zahra
    Moradi, Hamid Reza
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1255 - 1266
  • [23] Generalised Arithmetic Mean-Geometric Mean Inequality And Its Application To Find The Optimal Policy Of The Classical EOQ Model Under Interval Uncertainty
    Rahman, Md Sadikur
    Khatun, Rukhsar
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 90 - 99
  • [24] BEHOLD - THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    EDDY, RH
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (03): : 208 - 208
  • [25] AN APPLICATION OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    SPITAL, S
    MAAS, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 909 - &
  • [26] Notes on the arithmetic-geometric mean inequality
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    AEQUATIONES MATHEMATICAE, 2024, 98 (06) : 1489 - 1502
  • [27] A PROOF OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY
    AKERBERG, B
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 997 - &
  • [28] Note on the geometric-arithmetic mean inequality
    Gluskin, E
    Milman, V
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2003, 1807 : 131 - 135
  • [29] Second law of thermodynamics and arithmetic-mean-geometric-mean inequality
    Wang, LQ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (21-22): : 2791 - 2793
  • [30] PROOF OF A MIXED ARITHMETIC-MEAN, GEOMETRIC-MEAN INEQUALITY
    KEDLAYA, K
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (04): : 355 - 357