Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data

被引:9
|
作者
Hassan, Amal S. [1 ]
Nassr, Said G. [2 ]
机构
[1] Cairo Univ, Dept Math Stat, Giza, Egypt
[2] Sinai Univ, Dept Quantitat Methods, Al Arish, Egypt
关键词
Inverse power Lomax distribution; Marshall-Olkin method; maximum likelihood; Bayesian estimation; Type I censored sample;
D O I
10.29220/CSAM.2021.28.2.099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce an extended form of the inverse power Lomax model via Marshall-Olkin approach. We call it the Marshall-Olkin inverse power Lomax (MOIPL) distribution. The four-parameter MOIPL distribution is very flexible which contains some former and new models. Vital properties of the MOIPL distribution are affirmed. Maximum likelihood estimators and approximate confidence intervals are considered under Type I censored samples. Maximum likelihood estimates are evaluated according to simulation study. Bayesian estimators as well as Bayesian credible intervals under symmetric loss function are obtained via Markov chain Monte Carlo (MCMC) approach. Finally, the flexibility of the new model is analyzed by means of two real data sets. It is found that the MOIPL model provides closer fits than some other models based on the selected criteria.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 50 条
  • [31] A NEW EXTENSION OF THE INVERSE POWER LOMAX DISTRIBUTION
    Nagarjuna, Vasili B. V.
    Chesneau, Christophe
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3B): : 717 - 740
  • [32] On parameter estimation for the generalized gamma distribution based on left-truncated and right-censored data
    Shang, Xiangwen
    Hon Keung Tony Ng
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (01)
  • [33] Estimation and prediction for power Lindley distribution under progressively type II right censored samples
    Valiollahi, R.
    Raqab, Mohammad Z.
    Asgharzadeh, A.
    Alqallaf, F. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 149 : 32 - 47
  • [34] A new one parameter distribution: properties and estimation with applications to complete and type II censored data
    Alshenawy, R.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 11 - 18
  • [35] Bayes Shrinkage Estimation of the Parameter of Rayleigh Distribution for Progressive Type-II Censored Data
    Dey, Sanku
    Dey, Tanujit
    Maiti, Sudhansu S.
    AUSTRIAN JOURNAL OF STATISTICS, 2015, 44 (04) : 3 - 15
  • [36] Consistent estimation of parameters and quantiles of the three-parameter gamma distribution based on Type-II right-censored data
    Nagatsuka, Hideki
    Balakrishnan, N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (12) : 2406 - 2424
  • [37] Statistical Inference Based on Censored Data of Entropy for Lomax Distribution
    Ahmed, Samah M.
    Ismail, Gamal M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [38] Statistical Inference to the Parameter of the Inverse Power Ishita Distribution under Progressive Type-II Censored Data with Application to COVID-19 Data
    Elnagar, Kariema A.
    Ramadan, Dina A.
    El-Desouky, Beih S.
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [39] Estimation of entropy for inverse Weibull distribution under multiple censored data
    Hassan, Anna S.
    Zaky, Ahmed N.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 331 - 337
  • [40] Inverse Regression Estimation for Censored Data
    Nadkarni, Nivedita V.
    Zhao, Yingqi
    Kosorok, Michael R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 178 - 190