Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data

被引:9
|
作者
Hassan, Amal S. [1 ]
Nassr, Said G. [2 ]
机构
[1] Cairo Univ, Dept Math Stat, Giza, Egypt
[2] Sinai Univ, Dept Quantitat Methods, Al Arish, Egypt
关键词
Inverse power Lomax distribution; Marshall-Olkin method; maximum likelihood; Bayesian estimation; Type I censored sample;
D O I
10.29220/CSAM.2021.28.2.099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce an extended form of the inverse power Lomax model via Marshall-Olkin approach. We call it the Marshall-Olkin inverse power Lomax (MOIPL) distribution. The four-parameter MOIPL distribution is very flexible which contains some former and new models. Vital properties of the MOIPL distribution are affirmed. Maximum likelihood estimators and approximate confidence intervals are considered under Type I censored samples. Maximum likelihood estimates are evaluated according to simulation study. Bayesian estimators as well as Bayesian credible intervals under symmetric loss function are obtained via Markov chain Monte Carlo (MCMC) approach. Finally, the flexibility of the new model is analyzed by means of two real data sets. It is found that the MOIPL model provides closer fits than some other models based on the selected criteria.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 50 条
  • [1] Parameter Estimation for Inverted Exponentiated Lomax Distribution with Right Censored Data
    Hassan, Amal
    Mohamed, Rokaya
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2019, 32 (04): : 1370 - 1386
  • [2] Parameter estimation of inverse Lindley distribution for Type-I censored data
    Suparna Basu
    Sanjay Kumar Singh
    Umesh Singh
    Computational Statistics, 2017, 32 : 367 - 385
  • [3] Parameter estimation of inverse Lindley distribution for Type-I censored data
    Basu, Suparna
    Singh, Sanjay Kumar
    Singh, Umesh
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 367 - 385
  • [4] Parameter Estimation of the Hybrid Censored Lomax Distribution
    Ashour, Samir Kamel
    Abdelfattah, Abdallah Mohamed
    Mohamed, Badiaa Said Khalil
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2011, 7 (01) : 1 - 19
  • [5] Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data
    Bantan, Rashad A. R.
    Elgarhy, Mohammed
    Chesneau, Christophe
    Jamal, Farrukh
    ENTROPY, 2020, 22 (06)
  • [6] Estimation of Parameters of Topp-Leone Inverse Lomax Distribution in Presence of Right Censored Samples
    Hassan, Amal
    Ismail, Doaa
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (04): : 1193 - 1208
  • [7] ON HYBRID CENSORED INVERSE LOMAX DISTRIBUTION: APPLICATION TO THE SURVIVAL DATA
    Yadav, Abhimanyu Singh
    Singh, Sanjay Kumar
    Singh, Umesh
    STATISTICA, 2016, 76 (02) : 185 - 203
  • [8] ESTIMATION OF PARAMETER FOR INVERSE RAYLEIGH DISTRIBUTION UNDER TYPE-I HYBRID CENSORED SAMPLES
    Akdogan, Yunus
    Ozkan, Egemen
    Karakaya, Kadir
    Tanis, Caner
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (04): : 1705 - 1711
  • [9] Reliability parameter estimation of the Inverse Flexible Weibull Distribution for Type-I censored samples
    Nasr, Arwa
    Gasmi, Soufiane
    Ben Hmida, Faycal
    2015 16TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2015, : 8 - 13
  • [10] Estimation of the coefficients of variation for inverse power Lomax distribution
    Ahmed, Samah M.
    Mustafa, Abdelfattah
    AIMS MATHEMATICS, 2024, 9 (12): : 33423 - 33441