Comparing a coevolutionary genetic algorithm for multiobjective optimization

被引:0
|
作者
Lohn, JD [1 ]
Kraus, WF [1 ]
Haith, GL [1 ]
机构
[1] NASA, Ames Res Ctr, Computat Sci Div, Moffett Field, CA 94035 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of,evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA yields poor coverage across the Pareto front, yet finds a solution that dominates all the solutions produced by the eight other algorithms.
引用
收藏
页码:1157 / 1162
页数:6
相关论文
共 50 条
  • [31] A Genetic Algorithm for Multiobjective Hard Scheduling Optimization
    Nino, E.
    Ardila, C.
    Perez, A.
    Donoso, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2010, 5 (05) : 825 - 836
  • [32] Multiobjective distributed coevolutionary multidisciplinary design optimization
    Chen, Qi-Feng
    Dai, Jin-Hai
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2002, 24 (04):
  • [33] Multiobjective Optimization design via Genetic Algorithm
    Lu, HM
    Yen, GG
    PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA'01), 2001, : 1190 - 1195
  • [34] A hybrid Genetic Algorithm for multiobjective structural optimization
    Wang, N.
    Tai, K.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2948 - 2955
  • [35] Genetic symbiosis algorithm for multiobjective optimization problem
    Mao, JM
    Hirasawa, K
    Hu, JL
    Murata, J
    IEEE RO-MAN 2000: 9TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, 2000, : 137 - 142
  • [36] Application of immune genetic algorithm to multiobjective optimization
    Xu, Jun
    Liu, Li
    Xu, Wenbo
    DCABES 2006 Proceedings, Vols 1 and 2, 2006, : 1048 - 1050
  • [37] A multicriteria genetic algorithm for solving multiobjective optimization
    Qi, Rongbin
    Qian, Feng
    Du, Wenli
    Li, Shaojun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 434 - 440
  • [38] Chaos-genetic algorithm for multiobjective optimization
    Qi, Rongbin
    Qian, Feng
    Li, Shaojun
    Wang, Zhenlei
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1563 - +
  • [39] A problem space genetic algorithm in multiobjective optimization
    Ayten Turkcan
    M. Selim Akturk
    Journal of Intelligent Manufacturing, 2003, 14 : 363 - 378
  • [40] Embedded genetic algorithm for multiobjective optimization problem
    Maji, P
    Das, C
    Chaudhuri, PP
    2005 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSING AND INFORMATION PROCESSING, PROCEEDINGS, 2005, : 308 - 313