Chip-based wide field-of-view nanoscopy

被引:0
|
作者
Diekmann, Robin [1 ]
Helle, Oystein I. [2 ]
Oie, Cristina I. [2 ]
McCourt, Peter [3 ]
Huser, Thomas R. [1 ,4 ,5 ]
Schuettpelz, Mark [1 ]
Ahluwalia, Balpreet S. [2 ]
机构
[1] Univ Bielefeld, Dept Phys, D-33615 Bielefeld, Germany
[2] UiT Arctic Univ Norway, Dept Phys & Technol, N-9037 Tromso, Norway
[3] UiT Arctic Univ Norway, Dept Med Biol, N-9037 Tromso, Norway
[4] Univ Calif Davis, Dept Internal Med, Davis, CA 95817 USA
[5] Univ Calif Davis, NSF Ctr Biophoton, Davis, CA 95817 USA
基金
欧洲研究理事会;
关键词
SINGLE-MOLECULE LOCALIZATION; OPTICAL RECONSTRUCTION MICROSCOPY; FLUORESCENCE MICROSCOPY; RESOLUTION LIMIT; CELLS; LIVER; EXCITATION; GUIDE; MICROPARTICLES; ILLUMINATION;
D O I
10.1038/NPHOTON.2017.55
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm x 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.
引用
收藏
页码:322 / +
页数:9
相关论文
共 50 条
  • [31] Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view
    Isikman, Serhan O.
    Sencan, Ikbal
    Mudanyali, Onur
    Bishara, Waheb
    Oztoprak, Cetin
    Ozcan, Aydogan
    LAB ON A CHIP, 2010, 10 (09) : 1109 - 1112
  • [32] Wide Field-of-View Image Stitching Algorithm Based on Depth Sequence of Light Field
    Wang Wenfeng
    Zhang Yanxin
    Chen Yu
    Ding Weili
    ACTA OPTICA SINICA, 2018, 38 (09)
  • [33] Wide field-of-view microscopy using compressive sensing
    Wang, Jie
    Wu, Jigang
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VI, 2014, 9268
  • [34] Wide field-of-view microscopy with Talbot Pattern Illumination
    Wu, Jigang
    Liu, Guangshuo
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS V, 2012, 8553
  • [35] Recent progress in wide field-of-view optical receivers
    LI GuangYuan
    Science Bulletin, 2009, (20) : 3618 - 3622
  • [36] Viral plaque analysis on a wide field-of-view, time-lapse, on-chip imaging platform
    Han, Chao
    Yang, Changhuei
    ANALYST, 2014, 139 (15) : 3727 - 3734
  • [37] Wide Field-of-View Fluorescence Imaging of Coral Reefs
    Treibitz, Tali
    Neal, Benjamin P.
    Kline, David I.
    Beijbom, Oscar
    Roberts, Paul L. D.
    Mitchell, B. Greg
    Kriegman, David
    SCIENTIFIC REPORTS, 2015, 5
  • [38] SKA cost model for wide field-of-view options
    Bunton, JD
    Hay, SG
    EXPERIMENTAL ASTRONOMY, 2004, 17 (1-3) : 381 - 405
  • [39] Perovskite Wide-Angle Field-Of-View Camera
    Ji, Zhong
    Liu, Yujin
    Zhao, Chuanxi
    Wang, Zhong Lin
    Mai, Wenjie
    ADVANCED MATERIALS, 2022, 34 (41)
  • [40] Design and evaluation of wide field-of-view optical antenna
    Deng, Peng
    Yuan, Xiuhua
    Zeng, Yanan
    Zhao, Ming
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XIV, 2011, 8129