Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom

被引:32
|
作者
Robbins, Hilary A. [1 ]
Alcala, Karine [1 ]
Swerdlow, Anthony J. [2 ]
Schoemaker, Minouk J. [2 ]
Wareham, Nick [3 ]
Travis, Ruth C. [4 ]
Crosbie, Philip A. J. [5 ]
Callister, Matthew [6 ]
Baldwin, David R. [7 ,8 ]
Landy, Rebecca [9 ]
Johansson, Mattias [1 ]
机构
[1] Int Agcy Res Canc, Lyon, France
[2] Inst Canc Res, London, England
[3] Univ Cambridge, Cambridge, England
[4] Univ Oxford, Nuffield Dept Populat Hlth, Canc Epidemiol Unit, Oxford, England
[5] Univ Manchester, Manchester, Lancs, England
[6] Leeds Teaching Hosp, Leeds, W Yorkshire, England
[7] Nottingham Univ Hosp, Nottingham, England
[8] Univ Nottingham, Nottingham, England
[9] NCI, Div Canc Epidemiol & Genet, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
DOSE COMPUTED-TOMOGRAPHY; INDIVIDUALS; SELECTION; CRITERIA; TRIAL;
D O I
10.1038/s41416-021-01278-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The National Health Service England (NHS) classifies individuals as eligible for lung cancer screening using two risk prediction models, PLCOm2012 and Liverpool Lung Project-v2 (LLPv2). However, no study has compared the performance of lung cancer risk models in the UK. Methods We analysed current and former smokers aged 40-80 years in the UK Biobank (N = 217,199), EPIC-UK (N = 30,813), and Generations Study (N = 25,777). We quantified model calibration (ratio of expected to observed cases, E/O) and discrimination (AUC). Results Risk discrimination in UK Biobank was best for the Lung Cancer Death Risk Assessment Tool (LCDRAT, AUC = 0.82, 95% CI = 0.81-0.84), followed by the LCRAT (AUC = 0.81, 95% CI = 0.79-0.82) and the Bach model (AUC = 0.80, 95% CI = 0.79-0.81). Results were similar in EPIC-UK and the Generations Study. All models overestimated risk in all cohorts, with E/O in UK Biobank ranging from 1.20 for LLPv3 (95% CI = 1.14-1.27) to 2.16 for LLPv2 (95% CI = 2.05-2.28). Overestimation increased with area-level socioeconomic status. In the combined cohorts, USPSTF 2013 criteria classified 50.7% of future cases as screening eligible. The LCDRAT and LCRAT identified 60.9%, followed by PLCOm2012 (58.3%), Bach (58.0%), LLPv3 (56.6%), and LLPv2 (53.7%). Conclusion In UK cohorts, the ability of risk prediction models to classify future lung cancer cases as eligible for screening was best for LCDRAT/LCRAT, very good for PLCOm2012, and lowest for LLPv2. Our results highlight the importance of validating prediction tools in specific countries.
引用
收藏
页码:2026 / 2034
页数:9
相关论文
共 50 条
  • [1] Comparative Performance of Lung Cancer Risk Models to Define Lung Screening Eligibility in the United Kingdom
    Robbins, H.
    Alcala, K.
    Swerdlow, A.
    Schoemaker, M.
    Wareham, N.
    Key, T.
    Travis, R.
    Brennan, P.
    Crosbie, P.
    Callister, M.
    Baldwin, D.
    Landy, R.
    Johansson, M.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (03) : S480 - S480
  • [2] Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom
    Hilary A. Robbins
    Karine Alcala
    Anthony J. Swerdlow
    Minouk J. Schoemaker
    Nick Wareham
    Ruth C. Travis
    Philip A. J. Crosbie
    Matthew Callister
    David R. Baldwin
    Rebecca Landy
    Mattias Johansson
    British Journal of Cancer, 2021, 124 : 2026 - 2034
  • [3] Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom (Apr, 10.1038/s41416-021-01278-0, 2021)
    Robbins, Hilary A.
    Alcala, Karine
    Swerdlow, Anthony J.
    Schoemaker, Minouk J.
    Wareham, Nick
    Travis, Ruth C.
    Crosbie, Philip A. J.
    Callister, Matthew
    Baldwin, David R.
    Landy, Rebecca
    Johansson, Mattias
    BRITISH JOURNAL OF CANCER, 2021, 125 (02) : 305 - 305
  • [4] LUNG CANCER RISK PROFILES AND ELIGIBILITY OF ATTENDEES IN A LUNG CANCER SCREENING DEMONSTRATION PILOT
    Ruparel, M.
    Dickson, J. L.
    Quaife, S. L.
    Bhowmik, A.
    Taylor, M. N.
    Ahmed, A.
    Shaw, P. J.
    Burke, S.
    Soo, M. J.
    Devaraj, A.
    Navani, N.
    Duffy, S. W.
    Baldwin, D. R.
    Waller, J.
    Janes, S. M.
    THORAX, 2017, 72 : A11 - A12
  • [5] UNITED KINGDOM LUNG CANCER SCREENING (UKLS) TRIAL
    Field, John K.
    Duffy, Stephen
    Baldwin, D.
    Brain, K.
    Eisen, T.
    Hands, Christopher J. D.
    Kerr, K. M.
    Page, R.
    Parmar, Mahesh
    Wald, N.
    Weller, D.
    Whynes, D.
    Williamson, P.
    Hansell, D.
    JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (06) : S1382 - S1383
  • [6] UKLS - United Kingdom Lung Cancer Screening Trial
    Field, John K.
    Baldwin, David
    Stephen, Duffy W.
    Devaraj, Anand
    Hansell, David M.
    CANCER RESEARCH, 2012, 72
  • [7] Are we there yet? Performance of risk-model based eligibility for lung cancer screening
    Manful, Adoma A.
    Murray, Megan H.
    Mercaldo, Sarah F.
    Blume, Jeffrey D.
    Aldrich, Melinda C.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2023, 32 (01) : 89 - 90
  • [8] An Exploration of Attitudes and Barriers to Uptake of Lung Cancer Screening in at Risk Adults in the United Kingdom
    O'Dowd, E.
    Bains, M.
    Baldwin, D.
    Hubbard, R.
    Mckeever, T.
    Solomon, J.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2413 - S2413
  • [9] Could use of individualized risk models mitigate health disparities in eligibility for lung cancer screening?
    Katki, Hormuzd
    Skarzynski, Martin
    Cheung, Li
    Berg, Christine
    Chaturvedi, Anil
    Landy, Rebecca
    Young, Corey
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (06)
  • [10] Lung Cancer in the United Kingdom
    Navani, Neal
    Baldwin, David R.
    Edwards, John G.
    Evison, Matthew
    McDonald, Fiona
    Nicholson, Andrew G.
    Fenemore, Jackie
    Sage, Elizabeth K.
    Popat, Sanjay
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (02) : 186 - 193