Low-temperature hydrothermal fabrication of Fe3O4 nanostructured solar selective absorption films

被引:24
|
作者
Fu, Rong [1 ]
Wu, Xiaofeng [1 ]
Wang, Xingli [1 ,2 ]
Ma, Wei [1 ]
Yuan, Long [1 ]
Gao, Lu [1 ]
Huang, Keke [1 ]
Feng, Shouhua [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Jilin, Peoples R China
[2] Hainan Acad Environm Sci, Hainan Environm Monitoring Ctr Stn, Haikou 571126, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrothermal; Nano materials; Solar selective absorber; Metal oxide; THERMAL-STABILITY; CELL APPLICATIONS; STAINLESS-STEEL; TANDEM ABSORBER; NAOH SOLUTIONS; THIN-FILMS; COATINGS; XPS; NANOPARTICLES; HOT;
D O I
10.1016/j.apsusc.2018.07.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Textured surface with complex nanostructure is considered as an important route for high efficient solar collector. Herein, we report a low-temperature one-step hydrothermal method to prepare Fe3O4 textured films for solar selective absorber. Surface morphology and thickness of Fe3O4 films can be tuned by the factors of alkaline concentration and reaction time. The irradiated photons can be effectively trapped in the interior space of the porous nanostructure by multi-reflection within the inner surface of irregular pores constructed by Fe3O4 nanoparticles. The as-prepared Fe3O4 films display excellent absorptivity (0.74-0.93) and low emittance (0.11-0.62). The absorption in the short wavelength zone (0.3-2.5 mu m) mainly depends on the surface morphology, and the emission in the long wavelength zone (2.5-20 mu m) is mainly determined by the thickness of the foamed nanostructure. This work develops a novel, low-cost, energy saving and environmentally friendly method to fabricate solar selective absorption films, which shows a good prospect in large area synthesis for solar energy utilization.
引用
收藏
页码:629 / 637
页数:9
相关论文
共 50 条
  • [21] Hydrothermal growth and characterization of magnetite (Fe3O4) thin films
    Zhu, Hongliang
    Yang, Deren
    Zhu, Luming
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (12): : 5870 - 5874
  • [22] Low temperature synthesis of Fe3O4 nanocrystals by hydrothermal decomposition of a metallorganic molecular precursor
    Wu, Xiao
    Tang, Jingyuan
    Zhang, Yongcai
    Wang, Hao
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 157 (1-3): : 81 - 86
  • [23] Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process
    Liang, Jun
    Li, Li
    Luo, Min
    Wang, Yuan
    CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (01) : 95 - 98
  • [24] Fabrication of Magnetic Cenosphere Deposited with Fe3O4 Nanoparticles by Hydrothermal Method
    Zhang, Hui
    Song, Jieyao
    Zhan, Jianchao
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 2021 - +
  • [25] Facile hydrothermal synthesis and microwave absorption of halloysite/polypyrrole/Fe3O4
    Maleki, Sajjad Tabar
    Babamoradi, Mohsen
    Rouhi, Mojtaba
    Maleki, Ali
    Hajizadeh, Zoleikha
    SYNTHETIC METALS, 2022, 290
  • [26] Facile Construction of Hierarchically Nanostructured Fe3O4 Films and Their Electrocatalytic Performance
    Cao, Xia
    Wang, Ning
    Lu, Xiaquan
    Guo, Lin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) : K76 - K79
  • [27] NMR-STUDY OF LOW-TEMPERATURE PHASE OF FE3O4 .1. EXPERIMENTS
    MIZOGUCHI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (05) : 1501 - 1511
  • [28] Multi-cycle low-temperature demagnetization (LTD) of multidomain Fe3O4 (magnetite)
    Liu, QS
    Yu, YJ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 283 (2-3) : 150 - 156
  • [29] ABRUPT CHANGE OF NMR LINE-SHAPE IN THE LOW-TEMPERATURE PHASE OF FE3O4
    MIZOGUCHI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1985, 54 (11) : 4295 - 4299
  • [30] Ultrasmall Platinum Nanoparticles on Fe3O4: A Low-Temperature Catalyst for the Preferential Oxidation Reaction
    Lopez, Angela
    Larrea, Ane
    Sebastian, Victor
    Calatayud, M. Pilar
    Irusta, Silvia
    Santamaria, Jesus
    CHEMCATCHEM, 2016, 8 (08) : 1479 - 1484