Traveling wave solutions for the Richards equation with hysteresis

被引:7
|
作者
El Behi-Gornostaeva, E. [1 ]
Mitra, K. [2 ]
Schweizer, B. [1 ]
机构
[1] TU Dortmund, Fak Math, Vogelspothsweg 87, D-44227 Dortmund, Germany
[2] TU Eindhoven, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
porous media; hysteresis; traveling wave; saturation overshoot; DYNAMIC CAPILLARY-PRESSURE; BUCKLEY-LEVERETT EQUATION; 2-PHASE FLOW; POROUS-MEDIA; SATURATION OVERSHOOT; PARABOLIC EQUATIONS; SCHEME; MODEL; INFILTRATION; PROPAGATION;
D O I
10.1093/imamat/hxz015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the one-dimensional non-equilibrium Richards equation with play-type hysteresis. It is known that regularized versions of this equation permit traveling wave solutions that show oscillations and, in particular, the physically relevant effect of a saturation overshoot. We investigate here the non-regularized hysteresis operator and combine it with a positive tau-term. Our result is that the model has monotone traveling wave solutions. These traveling waves describe the behavior of fronts in a bounded domain. In a two-dimensional interpretation, the result characterizes the speed of fingers in non-homogeneous solutions.
引用
收藏
页码:797 / 812
页数:16
相关论文
共 50 条
  • [21] Exact explicit traveling wave solutions for the CDF equation
    Geng, Yixiang
    Li, Jibin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 536 - 562
  • [22] Traveling wave solutions of a nonlinear reaction–advection equation
    Konstadia Lika
    Thomas G. Hallam
    Journal of Mathematical Biology, 1999, 38 : 346 - 358
  • [23] Traveling wave solutions of the Gardner equation in dusty plasmas
    Wang, Kang-Jia
    RESULTS IN PHYSICS, 2022, 33
  • [24] Traveling wave solutions of Burgers' equation with time delay
    Herron, Isom
    McCalla, Clement
    Mickens, Ronald
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [25] Exact traveling wave solutions for the modified Kawahara equation
    Elgarayhi, A
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (03): : 139 - 144
  • [26] Stability of Periodic Traveling Wave Solutions to the Kawahara Equation
    Trichtchenko, Olga
    Deconinck, Bernard
    Kollar, Richard
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2761 - 2783
  • [27] On traveling wave solutions of the Kundu-Eckhaus equation
    Kudryashov, Nikolay A.
    OPTIK, 2020, 224
  • [28] BOUNDED TRAVELING WAVE SOLUTIONS TO THE SHORT PULSE EQUATION
    Zhuang, Binxian
    Xiang, Yuanjiang
    Dai, Xiaoyu
    Wen, Shuangchun
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
  • [29] Traveling wave solutions of the Degasperis-Procesi equation
    Lenells, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) : 72 - 82
  • [30] Bifurcation of Traveling Wave Solutions of the Dual Ito Equation
    Fan, Xinghua
    Li, Shasha
    ABSTRACT AND APPLIED ANALYSIS, 2014,