Traveling wave solutions for the Richards equation with hysteresis

被引:7
|
作者
El Behi-Gornostaeva, E. [1 ]
Mitra, K. [2 ]
Schweizer, B. [1 ]
机构
[1] TU Dortmund, Fak Math, Vogelspothsweg 87, D-44227 Dortmund, Germany
[2] TU Eindhoven, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
porous media; hysteresis; traveling wave; saturation overshoot; DYNAMIC CAPILLARY-PRESSURE; BUCKLEY-LEVERETT EQUATION; 2-PHASE FLOW; POROUS-MEDIA; SATURATION OVERSHOOT; PARABOLIC EQUATIONS; SCHEME; MODEL; INFILTRATION; PROPAGATION;
D O I
10.1093/imamat/hxz015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the one-dimensional non-equilibrium Richards equation with play-type hysteresis. It is known that regularized versions of this equation permit traveling wave solutions that show oscillations and, in particular, the physically relevant effect of a saturation overshoot. We investigate here the non-regularized hysteresis operator and combine it with a positive tau-term. Our result is that the model has monotone traveling wave solutions. These traveling waves describe the behavior of fronts in a bounded domain. In a two-dimensional interpretation, the result characterizes the speed of fingers in non-homogeneous solutions.
引用
收藏
页码:797 / 812
页数:16
相关论文
共 50 条
  • [1] Verification of numerical solutions of the Richards equation using a traveling wave solution
    Zlotnik, Vitaly A.
    Wang, Tiejun
    Nieber, John L.
    Simunek, Jirka
    ADVANCES IN WATER RESOURCES, 2007, 30 (09) : 1973 - 1980
  • [2] BK equation and traveling wave solutions
    de Santana Amaral, J. T.
    Betemps, M. A.
    Ducati, M. B. Gay
    Soyez, G.
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (2B) : 648 - 651
  • [3] On traveling wave solutions of the θ-equation of dispersive type
    Ha, Tae Gab
    Liu, Hailiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 399 - 414
  • [4] Traveling wave solutions of the nonlinear Schrodinger equation
    Akbari-Moghanjoughi, M.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [5] Stability of traveling wave solutions to the Whitham equation
    Sanford, Nathan
    Kodama, Keri
    Carter, John D.
    Kalisch, Henrik
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2100 - 2107
  • [6] Traveling Wave Solutions in Optical Metamaterials Equation
    Cheng, Yueling
    Lu, Dianchen
    Wu, Yuhai
    Zhou, Jiangbo
    Wang, Linjun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (01) : 123 - 141
  • [7] Bifurcations of traveling wave solutions for the magma equation
    Geng, Yixiang
    Zhang, Lixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1741 - 1748
  • [8] Traveling Wave Solutions of the Schrodinger Map Equation
    Lin, Fanghua
    Wei, Juncheng
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (12) : 1585 - 1621
  • [9] Some Traveling Wave Solutions for the Boussinesq Equation
    Feng, Qinghua
    Wen, Chuanbao
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 196 - 201
  • [10] Traveling Wave Solutions for Generalized Bretherton Equation
    Amin, Esfahani
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (03) : 381 - 386