Parameter Estimation in Water Distribution Networks

被引:29
|
作者
Kumar, Shanmugam Mohan [2 ]
Narasimhan, Shankar [2 ]
Bhallamudi, S. Murty [1 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Madras 36, Tamil Nadu, India
[2] Indian Inst Technol, Dept Chem Engn, Madras 36, Tamil Nadu, India
关键词
State estimation; Parameter estimation; Monitoring and control; Graph theory; Water distribution networks; STATE ESTIMATION; CALIBRATION;
D O I
10.1007/s11269-009-9495-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Estimation of pipe roughness coefficients is an important task to be carried out before any water distribution network model is used for online applications such as monitoring and control. In this study, a combined state and parameter estimation model for water distribution networks is presented. Typically, estimation of roughness coefficient for each individual pipe is not possible due to non-availability of sufficient number of measurements. In order to address this problem, a formal procedure based on K-means clustering algorithm is proposed for grouping the pipes which are likely to have the same roughness characteristics. Also, graph-theoretic concepts are used to reduce the dimensionality of the problem and thereby achieve significant computational efficiency. The performance of the proposed model is demonstrated on a realistic urban water distribution network.
引用
收藏
页码:1251 / 1272
页数:22
相关论文
共 50 条
  • [41] Invertible Neural Networks for High-Speed Channel Design & Parameter Distribution Estimation
    Ambasana, Nikita
    Bhatti, Osama W.
    Dolatsara, Majid A.
    Swaminathan, Madhavan
    Yang, Xianbo
    Paladhi, Pavel R.
    Becker, Wiren Dale
    IEEE 30TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS 2021), 2021,
  • [42] Parameter estimation via neural networks
    Phillips, NG
    Kogut, A
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 471 - 473
  • [43] Diversified Parameter Estimation in Complex Networks
    Tajer, Ali
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 905 - 908
  • [44] The Parameter Estimation of Clayton Copula Estimation of Distribution Algorithm
    Wang, Ying-Cong
    Wang, Li-Fang
    Zeng, Jian-Chao
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 227 - 230
  • [45] On estimation of the shape parameter of the gamma distribution
    Zaigraev, A.
    Podraza-Karakulska, A.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (03) : 286 - 295
  • [46] Fuzzy parameter estimation of the Rayleigh distribution
    Van Hecke, T.
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2018, 21 (07): : 1391 - 1400
  • [48] ESTIMATION OF PARAMETER N IN BINOMIAL DISTRIBUTION
    FELDMAN, D
    FOX, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (321) : 150 - &
  • [49] Nonlinear Parameter Estimation via Estimation of Distribution Algorithms
    Li, Jun
    Jiang, Yong
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 213 - 217
  • [50] Parameter Estimation with Resistance for Uniform Distribution
    Zhao, Zhiwen
    2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 1468 - 1474