CALDERON PROBLEM FOR MAXWELL'S EQUATIONS IN CYLINDRICAL DOMAIN

被引:1
|
作者
Imanuvilov, Oleg Yu. [1 ]
Yamamoto, Masahiro [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
关键词
Calderon problem; complex geometric optics solutions; Carleman estimate; inverse problem; Maxwell's equations; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; LOCAL DATA;
D O I
10.3934/ipi.2014.8.1117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some uniqueness results in determination of the conductivity, the permeability and the permittivity of Maxwell's equations in a cylindrical domain Omega x (0, L) from partial boundary map. More specifically, for an arbitrarily given subboundary Gamma(0) subset of partial derivative Omega, we prove that the coefficients of Maxwell's equations can be uniquely determined in the subdomain (Omega\ [the convex hull of Gamma(0)]) x (0, L) by the boundary map only for inputs vanishing on Gamma(0) x (0, L).
引用
收藏
页码:1117 / 1137
页数:21
相关论文
共 50 条
  • [21] An approach to solving Maxwell's equations in time domain
    Yang, Hongli
    Zeng, Xianyang
    Wu, Xinyuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [22] Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain
    Sattorov, E. N.
    MATHEMATICAL NOTES, 2009, 86 (3-4) : 422 - 431
  • [23] Regularization of the solution of the Cauchy problem for the system of Maxwell equations in an unbounded domain
    É. N. Sattorov
    Mathematical Notes, 2009, 86
  • [24] Solutions of the cylindrical nonlinear Maxwell equations
    Xiong, Hao
    Si, Liu-Gang
    Ding, Chunling
    Lu, Xin-You
    Yang, Xiaoxue
    Wu, Ying
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [25] The Calderon problem for quasilinear elliptic equations
    Munoz, Claudio
    Uhlmann, Gunther
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1143 - 1166
  • [26] An Inverse Problem for Maxwell’s Equations in Anisotropic Media
    Masahiro YAMAMOTO
    Chinese Annals of Mathematics, 2007, (01) : 35 - 54
  • [27] An inverse source problem for Maxwell's equations in magnetoencephalography
    Ammari, H
    Bao, G
    Fleming, JL
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) : 1369 - 1382
  • [28] An Inverse Problem for Maxwell's Equations in Anisotropic Media*
    Shumin Li
    Masahiro Yamamoto
    Chinese Annals of Mathematics, Series B, 2007, 28 : 35 - 54
  • [29] On a singular limit problem for nonlinear Maxwell's equations
    Yin, HM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) : 355 - 375
  • [30] An inverse problem for Maxwell's equations with Lipschitz parameters
    Pichler, Monika
    INVERSE PROBLEMS, 2018, 34 (02)