CALDERON PROBLEM FOR MAXWELL'S EQUATIONS IN CYLINDRICAL DOMAIN

被引:1
|
作者
Imanuvilov, Oleg Yu. [1 ]
Yamamoto, Masahiro [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
关键词
Calderon problem; complex geometric optics solutions; Carleman estimate; inverse problem; Maxwell's equations; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; LOCAL DATA;
D O I
10.3934/ipi.2014.8.1117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some uniqueness results in determination of the conductivity, the permeability and the permittivity of Maxwell's equations in a cylindrical domain Omega x (0, L) from partial boundary map. More specifically, for an arbitrarily given subboundary Gamma(0) subset of partial derivative Omega, we prove that the coefficients of Maxwell's equations can be uniquely determined in the subdomain (Omega\ [the convex hull of Gamma(0)]) x (0, L) by the boundary map only for inputs vanishing on Gamma(0) x (0, L).
引用
收藏
页码:1117 / 1137
页数:21
相关论文
共 50 条