Feature selection for defect classification in machine condition monitoring

被引:0
|
作者
Malhi, A [1 ]
Gao, RX [1 ]
机构
[1] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
来源
IMTC/O3: PROCEEDINGS OF THE 20TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 AND 2 | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the sensitivity of various parameters to a defect condition of a machine differs, it is imperative to devise a feature selection scheme that selects the best parameters to maximize the accuracy of the defect classification scheme. A feature selection scheme based on principal component analysis (PCA) is proposed in this paper. A methodology was developed for bearing defect classification using neural networks. The scheme has shown to provide more accurate defect classification with less parameter inputs than using all parameters initially considered relevant.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条
  • [31] Connected Devices Classification using Feature Selection with Machine Learning
    Fagroud, Fatima Zahra
    Toumi, Hicham
    Lahmar, El Habib Ben
    Achtaich, Khadija
    El Filali, Sanaa
    Baddi, Youssef
    IAENG International Journal of Computer Science, 2022, 49 (02)
  • [32] Machine learning for fake news classification with optimal feature selection
    Fayaz, Muhammad
    Khan, Atif
    Bilal, Muhammad
    Khan, Sana Ullah
    SOFT COMPUTING, 2022, 26 (16) : 7763 - 7771
  • [33] Machine learning for fake news classification with optimal feature selection
    Muhammad Fayaz
    Atif Khan
    Muhammad Bilal
    Sana Ullah Khan
    Soft Computing, 2022, 26 : 7763 - 7771
  • [34] A memetic algorithm with support vector machine for feature selection and classification
    Messaouda Nekkaa
    Dalila Boughaci
    Memetic Computing, 2015, 7 : 59 - 73
  • [35] A Feature Selection Newton Method for Support Vector Machine Classification
    Glenn M. Fung
    O.L. Mangasarian
    Computational Optimization and Applications, 2004, 28 : 185 - 202
  • [36] Feature Selection for Text Classification Using Machine Learning Approaches
    Thirumoorthy, K.
    Muneeswaran, K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2022, 45 (01): : 51 - 56
  • [37] Simultaneous feature selection and classification via Minimax Probability Machine
    Yang L.
    Wang L.
    Sun Y.
    Zhang R.
    International Journal of Computational Intelligence Systems, 2010, 3 (6) : 754 - 760
  • [38] Feature Selection for Cancer Classification Based on Support Vector Machine
    Luo, Wei
    Wang, Lipo
    Sun, Jingjing
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 422 - +
  • [39] Simultaneous feature selection and classification via Minimax Probability Machine
    Yang, Liming
    Wang, Laisheng
    Sun, Yuhua
    Zhang, Ruiyan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (06) : 754 - 760
  • [40] Feature Selection for Text Classification Using Machine Learning Approaches
    K. Thirumoorthy
    K. Muneeswaran
    National Academy Science Letters, 2022, 45 : 51 - 56