Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy

被引:55
|
作者
Bernardi, Rafael C. [1 ]
Durner, Ellis [2 ]
Schoeler, Constantin [2 ]
Malinowska, Klara H. [2 ]
Carvalho, Bruna G. [3 ]
Bayer, Edward A. [4 ]
Luthey-Schulten, Zaida [1 ,5 ]
Gaub, Hermann E. [2 ]
Nash, Michael A. [6 ,7 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Ludwig Maximilians Univ Munchen, Lehrstuhl Angew Phys & Ctr Nanosci, D-80799 Munich, Germany
[3] Univ Estadual Campinas, Sch Chem Engn, BR-13083852 Campinas, SP, Brazil
[4] Weizmann Inst Sci, Dept Biomol Sci, IL-76100 Rehovot, Israel
[5] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[6] Univ Basel, Dept Chem, CH-4058 Basel, Switzerland
[7] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
基金
欧洲研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
RUMINOCOCCUS-FLAVEFACIENS CELLULOSOME; CONFIGURATIONAL ENTROPY; ATTACHMENT; RECONSTRUCTION; NANOMACHINES; DISSECTION; EXPANSION; REFLECTS;
D O I
10.1021/jacs.9b06776
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Can molecular dynamics simulations predict the mechanical behavior of protein complexes? Can simulations decipher the role of protein domains of unknown function in large macromolecular complexes? Here, we employ a wide-sampling computational approach to demonstrate that molecular dynamics simulations, when carefully performed and combined with single-molecule atomic force spectroscopy experiments, can predict and explain the behavior of highly mechanostable protein complexes. As a test case, we studied a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh). By performing dozens of short simulation replicas near the rupture event, and analyzing dynamic network fluctuations, we were able to generate large simulation statistics and directly compare them with experiments to uncover the mechanisms involved in mechanical stabilization. Our single-molecule force spectroscopy experiments show that the XDoc-Coh homologue complex withstands forces up to 1 nN at loading rates of 10(5) pN/s. Our simulation results reveal that this remarkable mechanical stability is achieved by a protein architecture that directs molecular deformation along paths that run perpendicular to the pulling axis. The X-module was found to play a crucial role in shielding the adjacent protein complex from mechanical rupture. These mechanisms of protein mechanical stabilization have potential applications in biotechnology for the development of systems exhibiting shear enhanced adhesion or tunable mechanics.
引用
收藏
页码:14752 / 14763
页数:12
相关论文
共 50 条
  • [41] Mechanical unfolding of a β-barrel membrane protein by single-molecule force spectroscopy
    Hui Chen
    Guangtao Song
    Yong Zhang
    Dongchun Ni
    Xinwei Zhang
    Yihua Huang
    Jizhong Lou
    Science China Life Sciences, 2021, 64 : 334 - 336
  • [42] Single-Molecule Force Spectroscopy Study on Modular Resilin Fusion Protein
    Griffo, Alessandra
    Haehl, Hendrik
    Grandthyll, Samuel
    Mueller, Frank
    Paananen, Arja
    Ilmen, Marja
    Szilvay, Geza R.
    Landowski, Christopher P.
    Penttila, Merja
    Jacobs, Karin
    Laaksonen, Paivi
    ACS OMEGA, 2017, 2 (10): : 6906 - 6915
  • [43] Mechanical unfolding of a β-barrel membrane protein by single-molecule force spectroscopy
    Hui Chen
    Guangtao Song
    Yong Zhang
    Dongchun Ni
    Xinwei Zhang
    Yihua Huang
    Jizhong Lou
    Science China(Life Sciences), 2021, (02) : 334 - 336
  • [44] Single-molecule force spectroscopy of G-protein-coupled receptors
    Zocher, Michael
    Bippes, Christian A.
    Zhang, Cheng
    Mueller, Daniel J.
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (19) : 7801 - 7815
  • [46] Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study
    Feng, Wei
    Wang, Zhigang
    Zhang, Wenke
    LANGMUIR, 2017, 33 (08) : 1826 - 1833
  • [47] The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy
    Schonfelder, Jorg
    De Sancho, David
    Perez-Jimenez, Raul
    JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (21) : 4245 - 4257
  • [48] Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy (vol 16, pg 890, 2009)
    Perez-Jimenez, Raul
    Li, Jingyuan
    Kosuri, Pallav
    Sanchez-Romero, Inmaculada
    Wiita, Arun P.
    Rodriguez-Larrea, David
    Chueca, Ana
    Holmgren, Arne
    Miranda-Vizuete, Antonio
    Becker, Katja
    Cho, Seung-Hyun
    Beckwith, Jon
    Gelhaye, Eric
    Jacquot, Jean P.
    Gaucher, Eric A.
    Sanchez-Ruiz, Jose M.
    Berne, Bruce J.
    Fernandez, Julio M.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (12): : 1331 - 1331
  • [49] A polyelectrolyte handle for single-molecule force spectroscopy
    Wang, Junpeng
    Kouznetsova, Tatiana B.
    Xia, Jianshe
    Angeles, Felipe Jimenez
    de la Cruz, Monica Olvera
    Craig, Stephen L.
    JOURNAL OF POLYMER SCIENCE, 2024, 62 (07) : 1277 - 1286
  • [50] Single-molecule force spectroscopy on Xanthan by AFM
    Li, HB
    Rief, M
    Oesterhelt, F
    Gaub, HE
    ADVANCED MATERIALS, 1998, 10 (04) : 316 - 319