Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy

被引:55
|
作者
Bernardi, Rafael C. [1 ]
Durner, Ellis [2 ]
Schoeler, Constantin [2 ]
Malinowska, Klara H. [2 ]
Carvalho, Bruna G. [3 ]
Bayer, Edward A. [4 ]
Luthey-Schulten, Zaida [1 ,5 ]
Gaub, Hermann E. [2 ]
Nash, Michael A. [6 ,7 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Ludwig Maximilians Univ Munchen, Lehrstuhl Angew Phys & Ctr Nanosci, D-80799 Munich, Germany
[3] Univ Estadual Campinas, Sch Chem Engn, BR-13083852 Campinas, SP, Brazil
[4] Weizmann Inst Sci, Dept Biomol Sci, IL-76100 Rehovot, Israel
[5] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[6] Univ Basel, Dept Chem, CH-4058 Basel, Switzerland
[7] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
基金
欧洲研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
RUMINOCOCCUS-FLAVEFACIENS CELLULOSOME; CONFIGURATIONAL ENTROPY; ATTACHMENT; RECONSTRUCTION; NANOMACHINES; DISSECTION; EXPANSION; REFLECTS;
D O I
10.1021/jacs.9b06776
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Can molecular dynamics simulations predict the mechanical behavior of protein complexes? Can simulations decipher the role of protein domains of unknown function in large macromolecular complexes? Here, we employ a wide-sampling computational approach to demonstrate that molecular dynamics simulations, when carefully performed and combined with single-molecule atomic force spectroscopy experiments, can predict and explain the behavior of highly mechanostable protein complexes. As a test case, we studied a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh). By performing dozens of short simulation replicas near the rupture event, and analyzing dynamic network fluctuations, we were able to generate large simulation statistics and directly compare them with experiments to uncover the mechanisms involved in mechanical stabilization. Our single-molecule force spectroscopy experiments show that the XDoc-Coh homologue complex withstands forces up to 1 nN at loading rates of 10(5) pN/s. Our simulation results reveal that this remarkable mechanical stability is achieved by a protein architecture that directs molecular deformation along paths that run perpendicular to the pulling axis. The X-module was found to play a crucial role in shielding the adjacent protein complex from mechanical rupture. These mechanisms of protein mechanical stabilization have potential applications in biotechnology for the development of systems exhibiting shear enhanced adhesion or tunable mechanics.
引用
收藏
页码:14752 / 14763
页数:12
相关论文
共 50 条
  • [1] Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations
    Tian, Fang
    Li, Guoqiang
    Zheng, Bin
    Liu, Yutong
    Shi, Shengchao
    Deng, Yibing
    Zheng, Peng
    CHEMICAL COMMUNICATIONS, 2020, 56 (28) : 3943 - 3946
  • [2] Protein folding mechanism revealed by single-molecule force spectroscopy experiments
    Hao Sun
    Zilong Guo
    Haiyan Hong
    Ping Yu
    Zhenyong Xue
    Hu Chen
    BiophysicsReports, 2021, 7 (05) : 399 - 412
  • [3] Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy
    Perez-Jimenez, Raul
    Li, Jingyuan
    Kosuri, Pallav
    Sanchez-Romero, Inmaculada
    Wiita, Arun P.
    Rodriguez-Larrea, David
    Chueca, Ana
    Holmgren, Arne
    Miranda-Vizuete, Antonio
    Becker, Katja
    Cho, Seung-Hyun
    Beckwith, Jon
    Gelhaye, Eric
    Jacquot, Jean P.
    Gaucher, Eric
    Sanchez-Ruiz, Jose M.
    Berne, Bruce J.
    Fernandez, Julio M.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (08) : 890 - U120
  • [4] Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy
    Raul Perez-Jimenez
    Jingyuan Li
    Pallav Kosuri
    Inmaculada Sanchez-Romero
    Arun P Wiita
    David Rodriguez-Larrea
    Ana Chueca
    Arne Holmgren
    Antonio Miranda-Vizuete
    Katja Becker
    Seung-Hyun Cho
    Jon Beckwith
    Eric Gelhaye
    Jean P Jacquot
    Eric A Gaucher
    Jose M Sanchez-Ruiz
    Bruce J Berne
    Julio M Fernandez
    Nature Structural & Molecular Biology, 2009, 16 : 890 - 896
  • [5] Single-Molecule Force Spectroscopy of Protein Folding
    Petrosyan, Rafayel
    Narayan, Abhishek
    Woodside, Michael T.
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (20)
  • [6] Erratum: Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy
    Raul Perez-Jimenez
    Jingyuan Li
    Pallav Kosuri
    Inmaculada Sanchez-Romero
    Arun P Wiita
    David Rodriguez-Larrea
    Ana Chueca
    Arne Holmgren
    Antonio Miranda-Vizuete
    Katja Becker
    Seung-Hyun Cho
    Jon Beckwith
    Eric Gelhaye
    Jean P Jacquot
    Eric A Gaucher
    Jose M Sanchez-Ruiz
    Bruce J Berne
    Julio M Fernandez
    Nature Structural & Molecular Biology, 2009, 16 : 1331 - 1331
  • [7] Low Folding Cooperativity of Hp35 Revealed by Single-Molecule Force Spectroscopy and Molecular Dynamics Simulation
    Lv, Chunmei
    Tan, Cheng
    Qin, Meng
    Zou, Dawei
    Cao, Yi
    Wang, Wei
    BIOPHYSICAL JOURNAL, 2012, 102 (08) : 1944 - 1951
  • [8] Dynamics and Multiple Binding Modes of DNA Intercalators Revealed by Single-Molecule Force Spectroscopy
    Paik, Daniel H.
    Perkins, Thomas T.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 176A - 176A
  • [9] Conformational Memory of a Protein Revealed by Single-Molecule Spectroscopy
    Schoerner, Mario
    Beyer, Sebastian Reinhardt
    Southall, June
    Cogdell, Richard J.
    Koehler, Juergen
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (44): : 13964 - 13970
  • [10] Dynamics of Protein Folding and Cofactor Binding Monitored by Single-Molecule Force Spectroscopy
    Cao, Yi
    Li, Hongbin
    BIOPHYSICAL JOURNAL, 2011, 101 (08) : 2009 - 2017