Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery

被引:69
|
作者
Liu, Jialong [1 ]
Wang, Zhirong [1 ]
Bai, Jinlong [1 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Jiangsu Key Lab Hazardous Chem Safety & Control, Nanjing 21009, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Overcharging; Aging; Thermal runaway; ELECTRIC VEHICLES; FAILURE-MECHANISM; BEHAVIOR; CELLS; FEATURES; CATHODE;
D O I
10.1016/j.jechem.2022.03.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Thermal runaway caused by overcharging results in catastrophic disasters. The influences of charging rate, ambient temperature and aging on thermal runaway caused by overcharging are studied qualita-tively and quantitatively in this manuscript. The results of overcharging tests indicate that high charging rate and ambient temperature increase thermal runaway risk. Aging in 40 degrees C decreases thermal runaway risk. The risk increase of battery with high overcharging rate and in high ambient temperature is due to fast lithium plating reaction and accelerated SEI decomposition, respectively. The risk decrease of aged battery is due to the occurrence of SEI before overcharging tests. SEI suppresses the side reactions between lithium plating and electrolyte. The results of orthogonal tests indicate that the rank of effect is: discharging rate > ambient temperature > aging. The heat generation is calculated based on the results of overcharging tests. The calculation results indicate that heat generated by side reactions contributes more to the total heat generation. Although thermal runaway does not occur during overcharging with low current, the heat dissipation of the lithium-ion battery is the most and deserves focus. The results are important to the design of battery management system and thermal management system to prevent thermal runaway induced by overcharging in total lifespan of battery.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 50 条
  • [31] The critical characteristics and transition process of lithium-ion battery thermal runaway
    Huang, Peifeng
    Yao, Caixia
    Mao, Binbin
    Wang, Qingsong
    Sun, Jinhua
    Bai, Zhonghao
    ENERGY, 2020, 213
  • [32] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [33] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [34] Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Qiao, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30956 - 30963
  • [35] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [36] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22
  • [37] Lithium-ion battery degradation caused by overcharging at low temperatures
    Sun, Pengfei
    Zhang, Xiaoning
    Wang, Shixue
    Zhu, Yu
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 30
  • [38] Characterizing and predicting 21700 NMC lithium-ion battery thermal runaway induced by nail penetration
    Shelke, Ashish, V
    Buston, Jonathan E. H.
    Gill, Jason
    Howard, Daniel
    Abbott, Katie C.
    Goddard, Steven L.
    Read, Elliott
    Howard, Gemma E.
    Abaza, Ahmed
    Cooper, Brian
    Wen, Jennifer X.
    APPLIED THERMAL ENGINEERING, 2022, 209
  • [39] A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway
    Qin, Peng
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF POWER SOURCES, 2021, 486
  • [40] Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway
    Sadeghi, Hosein
    Restuccia, Francesco
    JOURNAL OF POWER SOURCES, 2025, 629