Bioevents and redox conditions around the Cenomanian-Turonian anoxic event in Central Mexico

被引:31
|
作者
Nunez-Useche, Fernando [1 ,2 ]
Canet, Caries [2 ]
Barragan, Ricardo [3 ]
Alfonso, Pura [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ciencias Tierra, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico
[4] Univ Politecn Cataluna, Dept Engn Minera & Recursos Nat, Ave Bases Manresa 61-73, Manresa 08242, Spain
关键词
Cenomanian-Turonian; Organic-rich sediments; Anoxic/dysoxic bottom waters; Pyrite framboids; Bacterial sulfate reduction; Central Mexico; WESTERN INTERIOR BASIN; BOUNDARY INTERVAL; HIGH-RESOLUTION; ORGANIC-CARBON; VOLCANIC ASH; ISOTOPE FRACTIONATION; RYBIE SECTION; DEMERARA RISE; BIO-EVENTS; SEA-LEVEL;
D O I
10.1016/j.palaeo.2016.01.035
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The Xilitla section of central Mexico (western margin of the proto-North Atlantic) is characterized by pelagic sediments enriched in marine organic matter. Using biostratigraphic and radiometric data, it was dated at the latest Cenomanian-earliest Turonian transition. We identified an interval coeval with the faunal turnover associated with the Oceanic Anoxic Event 2 ( OAE 2), recording the Heterohelix shift and the "filament event" for the first time in Mexico. An integral analysis of sedimentary facies, pyrite and geochemical proxies reveals vertically variable redox conditions, with prevailing anoxic to dysoxic bottom waters. Along with phosphorous and manganese depletion, the highest content of total organic carbon and of certain redox-sensitive trace elements (RSTEs) is found during part of the anoxic event, confirming more uniform and constant oxygen-depleted conditions. This interval is also characterized by a significant enrichment in biogenic barium and elevated TOC/N-ToT ratios, suggesting a link between productivity and anoxia. Sulfur isotope fractionation has a maximum value within the anoxic event, favored by the increase in the flux of organic matter and intensified through sulfur recycling. Highly bioturbated beds representing short-lived episodes of oxic conditions are intermittent within the OAE 2 and become more frequent in the early Turonian. This study proposes a model similar to that of modern upwelling regions. High marine productivity controlled organic matter burial and oxygenation at the seafloor, varying between anoxic (laminated facies with small pyrite framboids) and dysoxic conditions (bedding-parallel bioturbated facies with inoceramid bivalves and large pyrite framboids), interrupted by short-term well-oxygenated episodes (thoroughly bioturbated fades with common benthic foraminifera). General low-oxygen conditions led to the formation of glauconite and pyrite (bacterially mediated); the enrichment of redox-sensitive trace elements in sediments (Cd, Zn, V and Cr scavenged by organic matter and Ni, Mo, Pb, Co and Re by pyrite) and resulted in Mn and P depletion. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 226
页数:22
相关论文
共 50 条
  • [41] A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence
    Zheng, Xin-Yuan
    Jenkyns, Hugh C.
    Gale, Andrew S.
    Ward, David J.
    Henderson, Gideon M.
    GEOLOGY, 2016, 44 (02) : 151 - 154
  • [42] THE CENOMANIAN TURONIAN ANOXIC EVENT IN EUROPE - AN ORGANIC GEOCHEMICAL STUDY
    FARRIMOND, P
    EGLINTON, G
    BRASSELL, SC
    JENKYNS, HC
    MARINE AND PETROLEUM GEOLOGY, 1990, 7 (01) : 75 - 89
  • [43] CHEMOSTRATIGRAPHY VERSUS BIOSTRATIGRAPHY - DATA FROM AROUND THE CENOMANIAN-TURONIAN BOUNDARY
    GALE, AS
    JENKYNS, HC
    KENNEDY, WJ
    CORFIELD, RM
    JOURNAL OF THE GEOLOGICAL SOCIETY, 1993, 150 : 29 - 32
  • [44] Foraminiferal biostratigraphy and bioevents of the Cenomanian-Turonian succession in southern Sinai, Egypt and relationship to OAE2
    El Baz, Sherif M.
    Khalil, Mohamed M.
    JOURNAL OF AFRICAN EARTH SCIENCES, 2019, 150 : 310 - 318
  • [45] Cenomanian-Turonian astronomical calibration and orbital forcing in Central Tunisia
    Abdeldaim, Ahmed
    Farouk, Sherif
    Ruebsam, Wolfgang
    Elamri, Zaineb
    Alsuwaidi, Mohammad
    Al-Kahtany, Khaled
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2025, 666
  • [46] Biostratigraphy and environmental changes across the Cenomanian-Turonian boundary, southern Mexico
    Aguilera-Franco, N
    Hernández-Romano, U
    Allison, PA
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2001, 14 (02) : 237 - 255
  • [47] GEOCHEMICAL ANOMALIES AT THE CENOMANIAN-TURONIAN BOUNDARY, NORTHWEST NEW-MEXICO
    CURIALE, JA
    ORGANIC GEOCHEMISTRY, 1994, 22 (3-5) : 487 - 500
  • [48] Data-model comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2
    Joo, Young Ji
    Sageman, Bradley B.
    Hurtgen, Matthew T.
    EARTH-SCIENCE REVIEWS, 2020, 203
  • [49] Spatio-temporal variability in microfossil and geochemical records of Cenomanian-Turonian oceanic anoxic event-2: a review
    C.P.Sooraj
    Shweta Gupta
    Jahnavi Punekar
    Journal of Palaeogeography, 2024, 13 (04) : 646 - 674
  • [50] Southern Hemisphere sea-surface temperatures during the Cenomanian-Turonian: Implications for the termination of Oceanic Anoxic Event 2
    Robinson, Stuart A.
    Dickson, Alexander J.
    Pain, Alana
    Jenkyns, Hugh C.
    O'Brien, Charlotte L.
    Farnsworth, Alexander
    Lunt, Daniel J.
    GEOLOGY, 2019, 47 (02) : 131 - 134