A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS

被引:3
|
作者
Pathan, M. A. [1 ]
Khan, Waseem A. [2 ]
机构
[1] KFRI, Ctr Math & Stat Sci CMSS, Peechi PO, Trichur 680653, Kerala, India
[2] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
关键词
Hermite polynomials; Bernoulli polynomials; poly-Bernoulli polynomials; Hermitepoly-Bernoulli polynomials; summation formulae; symmetric identities;
D O I
10.18514/MMN.2021.1684
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Phi((alpha))(n) (x, nu) of degree n and order alpha introduced by Dere and Simsek. The concepts of poly-Bernoulli numbers, poly-Bernoulli polynomials, Hermite-Bernoulli polynomials and generalized Hermite-Bernoulli polynomials are generalized to polynomials of three positive real parameters. Numerous properties of these polynomials and some relations are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized poly-Bernoulli numbers and polynomials.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [41] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [42] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [43] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    Advances in Difference Equations, 2014
  • [44] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [45] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [46] SOME POLYNOMIALS ASSOCIATED WITH GENERALIZED HERMITE POLYNOMIALS
    JOSHI, CM
    SINGHAL, JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 132 - &
  • [47] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [48] Poly-Cauchy polynomials and generalized Bernoulli polynomials
    Komatsu T.
    Shibukawa G.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 373 - 388
  • [49] DEGENERATE BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH DEGENERATE HERMITE POLYNOMIALS
    Haroon, Hiba
    Khan, Waseem Ahmad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 651 - 669
  • [50] Some Identities on Bernoulli and Hermite Polynomials Associated with Jacobi Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012