Approximate polynomial gcd: Small degree and small height perturbations

被引:5
|
作者
von zur Gathen, Joachim [1 ]
Mignotte, Maurice [2 ]
Shparlinski, Igor E. [3 ]
机构
[1] Bond Univ, B IT, D-53113 Bonn, Germany
[2] Univ Strasbourg, Dept Math, F-67084 Strasbourg, France
[3] Macquarie Univ, Dept Comp, N Ryde, NSW 2109, Australia
关键词
Euclidean algorithm; gcd; Approximate computation; UNIVARIATE POLYNOMIALS;
D O I
10.1016/j.jsc.2010.04.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the following computational problem: we are given two coprime univariate polynomials f(0) and f(1) over a ring D and want to find whether after a small perturbation we can achieve a large gcd We solve this problem in polynomial time for two notions of "large" (and "small"): large degree (when R = F is an arbitrary field, in the generic case when f(0) and f(1) have a so-called normal degree sequence), and large height (when D = Z). Our work adds to the existing notions of "approximate gcd". (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:879 / 886
页数:8
相关论文
共 50 条
  • [21] Small perturbations of polytopes
    Kipp, Christian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (12)
  • [22] Non-uniform spline recovery from small degree polynomial approximation
    De Castro, Yohann
    Mijoule, Guillaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) : 971 - 992
  • [23] INFLUENCE OF DEGREE OF NONEQUILIBRIUM OF A STEADY 2-PHASE FLOW ON PROPAGATION OF SMALL PERTURBATIONS
    KALININ, AV
    HIGH TEMPERATURE, 1974, 12 (01) : 121 - 128
  • [24] SMALL PERTURBATIONS OF GAUSSIAN REGRESSORS
    MILLET, A
    SMOLENSKI, W
    STATISTICS & PROBABILITY LETTERS, 1995, 24 (01) : 21 - 31
  • [25] Exact Polynomial Factorization by Approximate High Degree Algebraic Numbers
    Chen Jing-wei
    Feng Yong
    Qin Xiao-lin
    Zhang Jing-zhong
    SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 21 - 28
  • [26] Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four
    Eduardo Sáez
    Eduardo Stange
    Iván Szántó
    Czechoslovak Mathematical Journal, 2007, 57 : 105 - 114
  • [27] SMALL PERTURBATIONS IN SOLUTION THEORY
    BUFF, FP
    SCHINDLER, FM
    JOURNAL OF CHEMICAL PHYSICS, 1958, 29 (05): : 1075 - 1081
  • [28] Small molecule perturbations of septins
    Heasley, L. R.
    McMurray, M. A.
    SEPTINS, 2016, 136 : 311 - 319
  • [29] FAR BEYOND SMALL PERTURBATIONS
    STUERGA, D
    LALLEMANT, M
    JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY, 1993, 28 (02) : 73 - 83
  • [30] SMALL SERIES PERTURBATIONS METHOD
    SHCHETININ, KG
    RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (04): : 666 - 669