Some remarks on a singular reaction-diffusion system arising in predator prey modeling

被引:0
|
作者
Gaucel, Sebastien
Langlais, Michel
机构
[1] INRA, Unite MIA MathRisq, F-78352 Jouy En Josas, France
[2] Univ Bordeaux 2, CNRS, UMR 5251, IMB, F-33076 Bordeaux, France
[3] INRIA Futurs Anubis, F-33076 Bordeaux, France
关键词
global existence; blow up time; oscillations; singular reaction-diffusion systems; predator-prey model in insular environment; invasion and persistence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note is dedicated to the question of global existence for solutions to a two component singular system of reaction-diffusion equations modeling predator-prey interactions in insular environments. Depending on a 2D parameter space, positive orbits of the underlying ODE system undergo interesting dynamics, e.g., finite time existence and global existence may coexist. These results are partially extended to the reaction-diffusion system in the case of identical diffusivities. Our analysis relies on an auxiliary non singular reaction-diffusion system whose solutions may or may not blow up in finite time. Numerical simulations illustrate our analysis, including a numerical evidence of spatio-temporal oscillations.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [21] Hopf Bifurcations and Oscillatory Patterns of a Homogeneous Reaction-Diffusion Singular Predator-Prey Model
    Bao, Zhenhua
    Liu, He
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Dynamical response of a reaction-diffusion predator-prey system with cooperative hunting and prey refuge
    Han, Renji
    Mandal, Gourav
    Guin, Akshmi Narayan
    Chakravarty, Santabrata
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (10):
  • [23] THE EFFECT OF REFUGE AND PROPORTIONAL HARVESTING FOR A PREDATOR-PREY SYSTEM WITH REACTION-DIFFUSION
    Xueru Lin
    Annals of Applied Mathematics, 2020, 36 (03) : 235 - 247
  • [24] Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system
    Hu, Guangping
    Li, Xiaoling
    Wang, Yuepeng
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 265 - 275
  • [25] Dynamics of a periodic predator-prey reaction-diffusion system in heterogeneous environments
    Zhang, Zhenrui
    Wang, Jinfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 435
  • [26] Global Stability of Solutions in a Reaction-Diffusion System of Predator-Prey Model
    Luo, Demou
    Liu, Hailin
    FILOMAT, 2018, 32 (13) : 4665 - 4672
  • [27] TRAVELING WAVES IN A REACTION-DIFFUSION PREDATOR-PREY SYSTEM WITH NONLOCAL DELAYS
    Li, Zhe
    Xu, Rui
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (05)
  • [28] Numerical simulations of reaction-diffusion equations modeling prey-predator interaction with delay
    Ali, Ishtiaq
    Rasool, Ghulam
    Alrashed, Saleh
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (04)
  • [29] Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system
    Ducrot, Arnaud
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (01): : 1 - 15
  • [30] Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
    He, Xiao
    Zheng, Sining
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 73 - 77