Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor

被引:37
|
作者
Park, Soo-Jin [1 ,2 ]
Chase, George G. [5 ,6 ]
Jeong, Kwang-Un [3 ,4 ]
Kim, Hak Yong [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Ctr Healthcare Technol & Dev, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Dept Organ Mat & Fiber Engn, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Polymer Fus Res Ctr, Jeonju 561756, South Korea
[4] Chonbuk Natl Univ, Dept Polymer Nano Sci & Technol, Jeonju 561756, South Korea
[5] Univ Akron, Dept Chem, Akron, OH 44325 USA
[6] Univ Akron, Dept Biomol Engn, Akron, OH 44325 USA
关键词
Titania; Nanofibers; Electrospinning; Flexibility; PALLADIUM NANOPARTICLES; TIO2; NANOWIRES; PARTICLE-SIZE; PHOTOLUMINESCENCE; FIBERS;
D O I
10.1007/s10971-010-2174-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible mats of titania fibers are prepared by calcination of electrospun polyvinylpyrrolidone fibers containing titanium isopropoxide precursor. Structural investigation of the calcinated nanofibers by X-ray diffraction (XRD) and electron diffraction (ED) combined with the morphologies by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show the titania fibers, with an average diameter of 180 nm, were comprised of anatase and rutile crystals. The mechanical, chemical and thermal properties of the titania fiber mats are further investigated by the techniques of Instron mechanical tester, thermogravimetric analyzer (TGA), and Fourier transform infrared spectroscopy (FT-IR). The titania fiber mat prepared in this method exhibited a significant flexibility with 461 MPa Young's modulus.
引用
收藏
页码:188 / 194
页数:7
相关论文
共 50 条
  • [41] Sol-gel synthesis of titania hollow spheres
    Zhang, YX
    Li, GH
    Wu, YC
    Xie, T
    MATERIALS RESEARCH BULLETIN, 2005, 40 (11) : 1993 - 1999
  • [42] Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol-gel nanofilms
    Ferreira da Silva, A.
    Pepe, I.
    Gole, James L.
    Tomas, S. A.
    Palomino, R.
    de Azevedo, W. M.
    da Silva, E. F., Jr.
    Ahuja, R.
    Persson, C.
    APPLIED SURFACE SCIENCE, 2006, 252 (15) : 5365 - 5367
  • [43] Mechanical properties of sol-gel coatings on polycarbonate: a review
    Le Bail, Nicolas
    Benayoun, Stephane
    Toury, Berangere
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2015, 75 (03) : 710 - 719
  • [44] Growth mechanism and phase transformation of ZrO2 nanofibers fabricated by sol-gel electrospinning
    Li, Shouzhen
    Wang, Fei
    Han, Guangting
    Yu, Jianyong
    Liu, Yi-Tao
    Ding, Bin
    JOURNAL OF THE TEXTILE INSTITUTE, 2024, 115 (12) : 2671 - 2677
  • [45] Homogeneous and flexible mullite nanofibers fabricated by electrospinning through diphasic mullite sol-gel route
    Song, Xiaolei
    Ma, Yunzhu
    Wang, Juan
    Liu, Bing
    Yao, Shuwei
    Cai, Qingshan
    Liu, Wensheng
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (20) : 14871 - 14883
  • [46] Mullite fibre mats by a sol-gel spinning technique
    Chatterjee, M
    Naskar, MK
    Chakrabarty, PK
    Ganguli, D
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2002, 25 (02) : 169 - 174
  • [47] Mullite Fibre Mats by a Sol-Gel Spinning Technique
    M. Chatterjee
    M.K. Naskar
    P.K. Chakrabarty
    D. Ganguli
    Journal of Sol-Gel Science and Technology, 2002, 25 : 169 - 174
  • [48] Optical humidity sensors based on titania films fabricated by sol-gel and thermal evaporation methods
    Yadav, B. C.
    Pandey, N. K.
    Srivastava, Amit K.
    Sharma, Preeti
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (01) : 260 - 264
  • [49] Statistical Optimization of the Sol-Gel Electrospinning Process Conditions for Preparation of Polyamide 6/66 Nanofiber Bundles
    Franco, Edgar
    Dussan, Rosmery
    Amu, Maribel
    Navia, Diana
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [50] PREPARATION AND MECHANICAL PROPERTIES OF 3D-Cf/MULLITE COMPOSITES FABRICATED BY SOL-GEL PROCESS
    Dai, Kewei
    Peng, Haijun
    Ma, Qingsong
    Liu, Haitao
    HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES 8: CERAMIC TRANSACTIONS, VOL 248, 2014, 248 : 371 - 376