Wohlfahrt's Theorem for the Hecke group G5

被引:1
|
作者
Lang, Cheng Lien [1 ]
Lang, Mong Lung [1 ]
机构
[1] I Shou Univ, Dept Math, Kaohsiung, Taiwan
关键词
Hecke groups; Congruence subgroups; Wohlfahrt's Theorem; MODULAR GROUP; CONGRUENCE; SUBGROUPS;
D O I
10.1016/j.jalgebra.2014.08.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a subgroup of the inhomogeneous Hecke group G(5) of geometric level r. Then K is congruence if and only if K contains the principal congruence subgroup G(2r). In the case r not equivalent to 0 (mod 4), K is congruence if and only if K contains the principal congruence subgroup G(r). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [41] Performance of the New Separator Compomat G5
    Agildere, A.
    Richter, E.
    TRANSFUSION, 2009, 49 : 110A - 111A
  • [44] 苹果G5上演“极速传说”
    刘艳
    互联网周刊, 2003, (22) : 54 - 55
  • [45] iMac G5,带着问号出场
    宋妍
    互联网周刊, 2004, (32) : 50 - 51
  • [46] 佳能G5数码相机
    刘荣生
    照相机, 2003, (08) : 27 - 28
  • [47] FACTOR GROUPS OF G5,5,120
    MUSHTAQ, Q
    ASHIQ, M
    MAQSOOD, T
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (12) : 3759 - 3767
  • [48] First level package design considerations for the IBM's S/390 G5 server
    Katopis, G
    Becker, D
    Stoller, H
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING, 1998, : 15 - 16
  • [49] Chip integration methodology for the IBM S/390 G5 and G6 custom microprocessors
    Averill, RM
    Barkley, KG
    Bowen, MA
    Camporese, PJ
    Dansky, AH
    Hatch, RF
    Hoffman, DE
    Mayo, MD
    McCabe, SA
    McNamara, TG
    McPherson, TJ
    Northrop, GA
    Sigal, L
    Smith, HH
    Webber, DA
    Williams, PM
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1999, 43 (5-6) : 681 - 706
  • [50] RIICH G5标准制定者——试驾瑞麒G5 2.0T
    白帆
    郭华静
    汽车与驾驶维修(汽车版), 2010, (01) : 38 - 41