Wohlfahrt's Theorem for the Hecke group G5

被引:1
|
作者
Lang, Cheng Lien [1 ]
Lang, Mong Lung [1 ]
机构
[1] I Shou Univ, Dept Math, Kaohsiung, Taiwan
关键词
Hecke groups; Congruence subgroups; Wohlfahrt's Theorem; MODULAR GROUP; CONGRUENCE; SUBGROUPS;
D O I
10.1016/j.jalgebra.2014.08.056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a subgroup of the inhomogeneous Hecke group G(5) of geometric level r. Then K is congruence if and only if K contains the principal congruence subgroup G(2r). In the case r not equivalent to 0 (mod 4), K is congruence if and only if K contains the principal congruence subgroup G(r). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [1] Normalizers of the congruence subgroups of the Hecke group G5
    Lang, ML
    Tan, SP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (11) : 3131 - 3140
  • [2] The structure of the normalisers of the congruence subgroups of the Hecke group G5
    Lang, Mong Lung
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 53 - 62
  • [3] Normalizers of the congruence subgroups of the Hecke group G5 II
    Lang, ML
    Tan, SP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) : 2271 - 2280
  • [4] The Coxeter group G5,5,24
    Mushtaq, Q
    Ashiq, M
    Maqsood, T
    Aslam, M
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (05) : 2175 - 2182
  • [5] THE MARKOV SPECTRUM IN THE HECKE GROUP-G5
    SERIES, C
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1988, 57 : 151 - 181
  • [7] 比亚迪G5
    卫东
    汽车与运动, 2014, (12) : 38 - 41
  • [8] 奥轩GX5 源于G5胜于G5
    蔺天子
    中国汽车市场, 2012, (13) : 7 - 7
  • [9] iMac G5
    李寒
    吴敌
    个人电脑, 2004, (12) : 210 - 211
  • [10] IBM's S/390 G5 microprocessor design
    Slegel, Timothy J.
    Averill III, Robert M.
    Check, Mark A.
    Giamei, Bruce C.
    Krumm, Barry W.
    Krygowski, Christopher A.
    Li, Wen H.
    Liptay, John S.
    MacDougall, John D.
    McPherson, Thomas J.
    Navarro, Jennifer A.
    Schwarz, Eric M.
    Shum, Kevin
    Webb, Charles F.
    IEEE Micro, 19 (02): : 12 - 23