Multi-Depth Learning with Multi-Attention for fine-grained image classification

被引:0
|
作者
Dai, Zuhua [1 ]
Li, Hongyi [1 ]
Li, Kelong [1 ]
Zhou, Anwei [1 ]
机构
[1] Northwest Normal Univ, Sch Comp Sci & Engn, Lanzhou, Peoples R China
关键词
attention proposal; fine-grained image classification; multi-task learning;
D O I
10.1109/ICHCI51889.2020.00052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with the traditional image classification task, fine-grained image classification has the difficulty of small differences between classes and large differences within classes. In view of this difficulty, attention proposal has been widely used in fine-grained image classification. However, traditional attention proposal has to localize first and then processing. Model needs to run step by step and the attention focusing method is single. This paper proposed a model (MAMDL, Multi-Attention-Multi-Depth-Learning) which combines multiple attention mechanisms and multi network parallel learning. The advantage of MAMDL is that it can first learn end-to-end. Secondly, the multiple attention mechanisms can effectively combine four attention mechanisms to improve the network's ability to process local features. Finally, this paper focuses on the attention found in the backbone network, Feature extraction from branch convolution neural networks with different depths enhances the classification performance of the model. The experimental results show that MAMDL outperforms mainstream fine-grained image classification methods on the fine-grained image classification dataset CUB-200, Stanford dogs and Stanford cars.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [31] Fine-Grained Image Recognition via Multi-Part Learning
    Jiang, Hailang
    Liu, Jianming
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (07): : 1032 - 1039
  • [32] Integrating fine-grained attention into multi-task learning for knowledge tracing
    Liangliang He
    Xiao Li
    Pancheng Wang
    Jintao Tang
    Ting Wang
    World Wide Web, 2023, 26 : 3347 - 3372
  • [33] Subtler mixed attention network on fine-grained image classification
    Liu, Chao
    Huang, Lei
    Wei, Zhiqiang
    Zhang, Wenfeng
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7903 - 7916
  • [34] Integrating fine-grained attention into multi-task learning for knowledge tracing
    He, Liangliang
    Li, Xiao
    Wang, Pancheng
    Tang, Jintao
    Wang, Ting
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3347 - 3372
  • [35] Bilinear Residual Attention Networks for Fine-Grained Image Classification
    Wang Yang
    Liu Libo
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [36] Subtler mixed attention network on fine-grained image classification
    Chao Liu
    Lei Huang
    Zhiqiang Wei
    Wenfeng Zhang
    Applied Intelligence, 2021, 51 : 7903 - 7916
  • [37] Multi-scale local regional attention fusion using visual transformers for fine-grained image classification
    Li, Yusong
    Xie, Bin
    Li, Yuling
    Zhang, Jiahao
    VISUAL COMPUTER, 2024,
  • [38] Multi-branch Recurrent Attention Convolutional Neural Network with Evidence Theory for Fine-Grained Image Classification
    Xu, Zhikang
    Zhang, Bofeng
    Fu, Haijie
    Yue, Xiaodong
    Lv, Ying
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 177 - 184
  • [39] MASK GUIDED ATTENTION FOR FINE-GRAINED PATCHY IMAGE CLASSIFICATION
    Wang, Jun
    Yu, Xiaohan
    Gao, Yongsheng
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1044 - 1048
  • [40] Multi-modal Knowledge-Enhanced Fine-Grained Image Classification
    Cheng, Suyan
    Zhang, Feifei
    Zhou, Haoliang
    Xu, Changsheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT V, PRCV 2024, 2025, 15035 : 333 - 346