Asymptotic properties of the generalized semi-parametric MLE in linear regression

被引:0
|
作者
Yu, QQ
Wong, YC
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[2] Strang Canc Prevent Ctr, New York, NY 10021 USA
关键词
algorithms; consistency; generalized likelihood; super efficiency;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the semi-parametric linear regression model, Y = beta'X + e, with sample size n, where e has an unknown cdf F-o. The semi-parametric MLE (SMLE), of 3 under this set-up, called the generalized SMLE or GSMLE, has neither been studied in the literature nor an algorithm for it. We begin with an algorithm for the GSMLE. It is then shown that if F-o has a discontinuity point, P{beta(n) = beta if n is large} = 1. Simulation suggests that under some discontinuous distributions, beta(n) = beta even for n = 50. In contrast the least squares estimator (LSE), beta(n), satisfies P{beta(n) not equal beta i.o.} = 1. We demonstrate via a real discontinuous data example that the GSMLE can be better than the LSE in applications. Properties of the GSMLE in the continuous case axe also mentioned.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 50 条
  • [41] A semi-parametric partially linear investigation of the Kuznets' hypothesis
    Lin, Shu-Chin
    Huang, Ho-Chuan
    Weng, Hsiao-Wen
    JOURNAL OF COMPARATIVE ECONOMICS, 2006, 34 (03) : 634 - 647
  • [42] Estimation in semi-parametric regression with non-stationary regressors
    Chen, Jia
    Gao, Jiti
    Li, Degui
    BERNOULLI, 2012, 18 (02) : 678 - 702
  • [43] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [44] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    BERNOULLI, 2009, 15 (04) : 955 - 976
  • [45] Semi-parametric Regression under Model Uncertainty: Economic Applications
    Malsiner-Walli, Gertraud
    Hofmarcher, Paul
    Gruen, Bettina
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2019, 81 (05) : 1117 - 1143
  • [46] A new algorithm for fitting semi-parametric variance regression models
    Kristy P. Robledo
    Ian C. Marschner
    Computational Statistics, 2021, 36 : 2313 - 2335
  • [47] Intrinsic semi-parametric regression model on Grassmannian manifolds with applications
    Sheng, Xuanxuan
    Xiong, Di
    Ying, Shihui
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3830 - 3849
  • [48] Semi-parametric Bayes regression with network-valued covariates
    Xin Ma
    Suprateek Kundu
    Jennifer Stevens
    Machine Learning, 2022, 111 : 3733 - 3767
  • [49] Reinforcement Learning Method Based on Semi-parametric Regression Model
    Cheng, Yuhu
    Wang, Xuesong
    Tian, Xilan
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 11 - 15
  • [50] Semi-parametric nonlinear regression and transformation using functional networks
    Castillo, Enrique
    Hadi, Ali S.
    Lacruz, Beatriz
    Pruneda, Rosa E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2129 - 2157