asymptotic normality;
consistency;
heteroscedastic errors;
local least squares;
local stationanity;
multiple regression;
nonstationary;
temperature anomaly;
time series;
D O I:
10.1093/biomet/91.3.645
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We consider the estimation of parameters of a multiple regression model with nonstationary errors. We assume the nonstationary errors satisfy a time-dependent autoregressive process and describe a method for estimating the parameters of the regressors and the time-dependent autoregressive parameters. The parameters are rescaled as in nonparametric regression to obtain the asymptotic sampling properties of the estimators. The method is illustrated with an example taken from global temperature anomalies.
机构:
Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Stat, Campinas, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, Dept Stat, Campinas, Brazil
Montoril, Michel H.
Morettin, Pedro A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05508 Sao Paulo, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, Dept Stat, Campinas, Brazil
Morettin, Pedro A.
Chiann, Chang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05508 Sao Paulo, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, Dept Stat, Campinas, Brazil