Optimized Learning Vector Quantization Classifier with an Adaptive Euclidean Distance

被引:0
|
作者
de Souza, Renata M. C. R. [1 ]
Silva Filho, Telmo de M. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat CIn, BR-50740540 Recife, PE, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a classifier based on Optimized Learning Vector Quantization (optimized version of the basic LVQ1) and an adaptive Euclidean distance. The classifier furnishes discriminative class regions of the input data set that are represented by prototypes. In order to compare prototypes and patterns, the classifier uses an adaptive Euclidean distance that changes at each iteration but is the same for all the class regions. Experiments with real and synthetic data sets demonstrate the usefulness of this classifier.
引用
收藏
页码:799 / 806
页数:8
相关论文
共 50 条
  • [41] Generalized Learning Vector Quantization With Log-Euclidean Metric Learning on Symmetric Positive-Definite Manifold
    Tang, Fengzhen
    Tino, Peter
    Yu, Haibin
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (08) : 5178 - 5190
  • [42] Adaptive Fuzzy Learning Vector Quantization (AFLVQ) for Time Series Classification
    Albuquerque, Renan Fonteles
    de Oliveira, Paulo D. L.
    Braga, Arthur P. de S.
    FUZZY INFORMATION PROCESSING, NAFIPS 2018, 2018, 831 : 385 - 397
  • [43] Competitive learning using gradient and reinitialization methods for adaptive vector quantization
    Kurogi, S
    Nishida, T
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 281 - 288
  • [44] An adaptive learning and self-deleting neural network for vector quantization
    Maeda, M
    Miyajima, H
    Murashima, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1996, E79A (11) : 1886 - 1893
  • [45] Competitive learning using gradient and reinitialization methods for adaptive vector quantization
    Kurogi, Shuichi
    Nishida, Takeshi
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 281 - 288
  • [46] A vector quantization method for nearest neighbor classifier design
    Yen, CW
    Young, CN
    Nagurka, ML
    PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 725 - 731
  • [47] Fuzzy channel-optimized vector quantization
    Hwang, WJ
    Lin, FJ
    Lin, CT
    IEEE COMMUNICATIONS LETTERS, 2000, 4 (12) : 408 - 410
  • [48] Weighted Classification Error Rate Estimator for the Euclidean Distance Classifier
    Gvardinskas, Mindaugas
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2015, 2015, 538 : 343 - 355
  • [49] Optimized vector quantization with fuzzy distortion measure
    Mitra, S
    Pemmaraju, S
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 2 - 10
  • [50] Convergence of Stochastic Vector Quantization and Learning Vector Quantization with Bregman Divergences
    Mavridis, Christos N.
    Baras, John S.
    IFAC PAPERSONLINE, 2020, 53 (02): : 2214 - 2219