EFFICIENT IMPLEMENTATION OF QUANTUM CIRCUITS WITH LIMITED QUBIT INTERACTIONS

被引:0
|
作者
Brierley, Stephen [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The quantum circuit model allows gates between any pair of qubits yet physical instantiations allow only limited interactions. We address this problem by providing an interaction graph together with an efficient method for compiling quantum circuits so that gates are applied only locally. The graph requires each qubit to interact with 4 other qubits and yet the time-overhead for implementing any n-qubit quantum circuit is 4 log n. Building a network of quantum computing nodes according to this graph enables the network to emulate a single monolithic device with minimal overhead.
引用
收藏
页码:1096 / 1104
页数:9
相关论文
共 50 条
  • [31] Quantum dynamics of superconducting nano-circuits: phase qubit, charge qubit and rhombi chains
    Buisson, O.
    Guichard, W.
    Hekking, F. W. J.
    Levy, L.
    Pannetier, B.
    Dolata, R.
    Zorin, A. B.
    Didier, N.
    Fay, A.
    Hoskinson, E.
    Lecocq, F.
    Peng, Z. H.
    Pop, I. M.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (2-3) : 155 - 182
  • [32] Auxiliary qubit selection: a physical synthesis technique for quantum circuits
    Naser Mohammadzadeh
    Morteza Saheb Zamani
    Mehdi Sedighi
    Quantum Information Processing, 2011, 10 : 139 - 154
  • [33] Effective quantum simulator for many 64-qubit circuits
    Nguyen, AQ
    Anshel, M
    MSV '05: Proceedings of the 2005 International Conference on Modeling, Simulation and Visualization Methods, 2005, : 294 - 297
  • [34] Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance
    Zhang, Jingfu
    Peng, Xinhua
    Suter, Dieter
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [35] Quantum dynamics of superconducting nano-circuits: phase qubit, charge qubit and rhombi chains
    O. Buisson
    W. Guichard
    F. W. J. Hekking
    L. Lévy
    B. Pannetier
    R. Dolata
    A. B. Zorin
    N. Didier
    A. Fay
    E. Hoskinson
    F. Lecocq
    Z. H. Peng
    I. M. Pop
    Quantum Information Processing, 2009, 8 : 155 - 182
  • [36] Efficient quantum circuits for Szegedy quantum walks
    Loke, T.
    Wang, J. B.
    ANNALS OF PHYSICS, 2017, 382 : 64 - 84
  • [37] Efficient quantum circuits for quantum computational chemistry
    Yordanov, Yordan S.
    Arvidsson-Shukur, David R. M.
    Barnes, Crispin H. W.
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [38] Implementation of sequential game on quantum circuits
    Anjali Dhiman
    Tejasvi Uttam
    S. Balakrishnan
    Quantum Information Processing, 2020, 19
  • [39] Implementation of Entanglement Witnesses with Quantum Circuits
    Shen, Shu-Qian
    Gao, Xin-Qi
    Zhang, Rui-Qi
    Li, Ming
    Fei, Shao-Ming
    ADVANCED QUANTUM TECHNOLOGIES, 2025, 8 (01)
  • [40] Implementation of sequential game on quantum circuits
    Dhiman, Anjali
    Uttam, Tejasvi
    Balakrishnan, S.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)