Intrinsic finite element methods for the computation of fluxes for Poisson's equation

被引:10
|
作者
Ciarlet, P. G. [1 ]
Ciarlet, P., Jr. [2 ]
Sauter, S. A. [3 ]
Simian, C. [4 ]
机构
[1] City Univ Hong Kong, Dept Math, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] ENSTA ParisTech, Lab POEMS, CNRS ENSTA INRIA, UMR 7231, 828 Blvd Marechaux, F-91762 Palaiseau, France
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Univ Chicago, Dept Comp Sci, 1100 E 58th St, Chicago, IL 60637 USA
关键词
Elliptic boundary value problems; Conforming and non-conforming finite element spaces; Intrinsic formulation; ELASTICITY;
D O I
10.1007/s00211-015-0730-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
引用
收藏
页码:433 / 462
页数:30
相关论文
共 50 条
  • [22] The finite element approximation of the nonlinear Poisson-Boltzmann equation
    Chen, Long
    Holst, Michael J.
    Xu, Jinchao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2298 - 2320
  • [23] Partition of unity finite element method implementation for poisson equation
    Bacuta, C.
    Sun, J.
    ADVANCES IN APPLIED AND COMPUTATIONAL MATHEMATICS, 2006, : 35 - 46
  • [24] A superconvergent CDG finite element for the Poisson equation on polytopal meshes
    Ye, Xiu
    Zhang, Shangyou
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (03):
  • [25] ON FINITE-ELEMENT APPROXIMATION OF THE GRADIENT FOR SOLUTION OF POISSON EQUATION
    NEITTAANMAKI, P
    SARANEN, J
    NUMERISCHE MATHEMATIK, 1981, 37 (03) : 333 - 337
  • [26] A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (4-5) : 591 - 603
  • [27] FINITE ELEMENT-HOMOTOPY ANALYSIS FOR NONLINEAR POISSON EQUATION
    Cristescu, Ion Aurel
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (03) : 962 - 978
  • [28] Finite element methods for Darcy’s problem coupled with the heat equation
    Christine Bernardi
    Séréna Dib
    Vivette Girault
    Frédéric Hecht
    François Murat
    Toni Sayah
    Numerische Mathematik, 2018, 139 : 315 - 348
  • [29] Finite element methods for Darcy's problem coupled with the heat equation
    Bernardi, Christine
    Dib, Serena
    Girault, Vivette
    Hecht, Frederic
    Murat, Francois
    Sayah, Toni
    NUMERISCHE MATHEMATIK, 2018, 139 (02) : 315 - 348
  • [30] Coupling finite and boundary element methods to solve the Poisson-Boltzmann equation for electrostatics in molecular solvation
    Bosy, Michal
    Scroggs, Matthew W.
    Betcke, Timo
    Burman, Erik
    Cooper, Christopher D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (11) : 787 - 797