Intrinsic finite element methods for the computation of fluxes for Poisson's equation

被引:10
|
作者
Ciarlet, P. G. [1 ]
Ciarlet, P., Jr. [2 ]
Sauter, S. A. [3 ]
Simian, C. [4 ]
机构
[1] City Univ Hong Kong, Dept Math, 83 Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] ENSTA ParisTech, Lab POEMS, CNRS ENSTA INRIA, UMR 7231, 828 Blvd Marechaux, F-91762 Palaiseau, France
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Univ Chicago, Dept Comp Sci, 1100 E 58th St, Chicago, IL 60637 USA
关键词
Elliptic boundary value problems; Conforming and non-conforming finite element spaces; Intrinsic formulation; ELASTICITY;
D O I
10.1007/s00211-015-0730-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
引用
收藏
页码:433 / 462
页数:30
相关论文
共 50 条