Self-powered pressure sensor based on microfluidic triboelectric principle for human-machine interface applications

被引:18
|
作者
Goh, Qi Lun [1 ]
Chee, PeiSong [1 ]
Lim, Eng Hock [2 ]
Liew, Guo Guang [1 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Mech & Biomed Engn, Kajang, Malaysia
[2] Univ Tunku Abdul Rahman, Dept Elect & Elect Engn, Kajang, Malaysia
关键词
microfluidic-based triboelectric; stretchable energy harvester; self-powered sensor; human-machine interface (HMI); STRAIN SENSOR; NANOGENERATOR;
D O I
10.1088/1361-665X/ac01a5
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In pace with the fourth industrial revolution, the human-machine interface (HMI) has prospered due to the need of information exchange between human and machines. Although tremendous effort has been devoted to the development of various sensors for HMI systems, those that are made using rigid electronics have constraints in wearability, comfortability, and power consumption. In this paper, a wearable and stretchable self-powered pressure sensor is proposed based on the microfluidic triboelectric principle. Triboelectric output is produced through the charge electrification when the pre-filled liquid in the reservoir flows into a polydimethylsiloxane-made microchannel at an applied pressure. The pressure sensor can generate a peak-to-peak output voltage of 4.2 mV-42.6 mV when an input pressure ranging from 50 kPa to 275 kPa was applied. We further characterize the dynamic response of the pressure sensor where the peak-to-peak output voltage is seen to have increased from 0.2 mV to 11.5 mV when the frequency of the compression pressure is raised from 1 Hz to 13 Hz. As a proof of principle in demonstrating the pressure sensor for wearable HMI application, the soft pressure sensor was attached on a human finger to function as a touch button. The touch button was then used to control a real-time light-emitting diode illumination and gaming interaction. Unlike the conventional touch button that only produces a binary output, this compact touch button can emulate a real-time impact event from the applied pressure. These remarkable features enrich the sensing dimension for HMI, which shows the potential of our work for advanced human-machine manipulation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [22] A self-powered triboelectric pressure sensor for basketball training monitoring
    Huo, Xiaomin
    MATERIALS LETTERS, 2022, 320
  • [23] A wide range self-powered flexible pressure sensor based on triboelectric nanogenerator
    Min, Guanbo
    Dahiya, Abhishek Singh
    Mulvihill, Daniel M.
    Dahiya, Ravinder
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (FLEPS), 2021,
  • [24] Wear-resistant cellulosic triboelectric material for robust human-machine interface and high-performance self-powered sensing
    Li, Chao
    Wang, Liucheng
    Fu, Chenglong
    Yue, Jiaji
    Tao, Yehan
    Hu, Jinwen
    Lv, Dong
    Wang, Haisong
    Wang, Daoai
    Du, Jian
    NANO ENERGY, 2025, 135
  • [25] Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing
    Wang, Zixun
    Chen, Chen
    Fang, Lin
    Cao, Bao
    Tu, Xinbo
    Zhang, Renyun
    Dong, Kai
    Lai, Ying-Chih
    Wang, Peihong
    NANO ENERGY, 2023, 107
  • [26] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [27] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [28] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [29] A Triboelectric Nanogenerator-Based Wide Range Self-Powered Flexible Pressure Sensor
    Min, Guanbo
    Khandelwal, Gaurav
    Chirila, Radu
    Dahiya, Abhishek Singh
    Mulvihill, Daniel M.
    Dahiya, Ravinder S.
    IEEE Journal on Flexible Electronics, 2024, 3 (04): : 151 - 158
  • [30] Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
    Zhou, Jian
    Tao, Ye
    Liu, Weiyu
    Sun, Haizhen
    Wu, Wenlong
    Song, Chunlei
    Xue, Rui
    Jiang, Tianyi
    Jiang, Hongyuan
    Ren, Yukun
    NANO ENERGY, 2021, 89