Convolutional Neural Networks (CNN) Model for Mobile Brand Sentiment Analysis

被引:1
|
作者
Jantan, Hamidah [1 ]
Ibrahim, Puteri Ika Shazereen [1 ]
机构
[1] Univ Teknol MARA UiTM, Fac Comp & Math Sci, Terengganu Kampus, Kuala Terengganu 23000, Terengganu Daru, Malaysia
关键词
Sentiment analysis; Convolutional neural network (CNN); Mobile brands review;
D O I
10.1007/978-3-030-96308-8_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the demand of sentiment analysis is increasing due to the requirement of analyzing and structuring hidden information from unstructured data. The sentiment on public views such as on products, services, and issues can be collected from social media platforms in text form. Convolutional neural network (CNN) is a class of deep neural networks method which can enhance the learning procedures by utilizing the layers with convolving filters that are updating to local features CNN models. This will achieve excellent results for Natural Language Processing (NLP) tasks especially as it can better reveal and obtain the internal semantic representation of text information. Due to this reason, this study attempts to apply this technique in mobile brand reviews sentiment analysis. There are four phases involved in this study which is knowledge acquisition and data preparation; CNN model development and enhancement; and model performance evaluation phases. As a result, the CNN model has been proposed by enhancing the model strategicmapping for optimal solution in producing high accuracy model. In future work, this study plans to explore other parameters such as in data pre-processing and network training to enhance the performance of CNN model. The proposed method can be used as sentiment analysis mechanism in many areas such as in review analytic, search query retrieval and sentence modelling.
引用
收藏
页码:624 / 636
页数:13
相关论文
共 50 条
  • [41] Parameterized Convolutional Neural Networks for Aspect Level Sentiment Classification
    Huang, Binxuan
    Carley, Kathleen M.
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1091 - 1096
  • [42] Quantized Convolutional Neural Networks for Mobile Devices
    Wu, Jiaxiang
    Leng, Cong
    Wang, Yuhang
    Hu, Qinghao
    Cheng, Jian
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 4820 - 4828
  • [43] Sentiment Prediction in Scene Images via Convolutional Neural Networks
    Yao, Junfeng
    Yu, Yao
    Xue, Xiaoling
    2016 31ST YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2016, : 196 - 200
  • [44] Convolutional Neural Networks for Chinese Sentiment Classification of Social Network
    He, Jia
    Zou, MaoYang
    Liu, Ping
    2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, : 1877 - 1881
  • [45] A Sense Embedding of Deep Convolutional Neural Networks for Sentiment Classification
    Cui, Zhijian
    Shi, Xiaodong
    Chen, Yidong
    Guo, Yinmei
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (11): : 71 - 79
  • [46] Graph Convolutional Networks with Structural Attention Model for Aspect Based Sentiment Analysis
    Chen, Junjie
    Hou, Hongxu
    Ji, Yatu
    Gao, Jing
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [47] Sentiment Analysis on Twitter Data by Using Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM)
    Gandhi, Usha Devi
    Malarvizhi Kumar, Priyan
    Chandra Babu, Gokulnath
    Karthick, Gayathri
    WIRELESS PERSONAL COMMUNICATIONS, 2021,
  • [48] CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization
    Wang, Zijie J.
    Turko, Robert
    Shaikh, Omar
    Park, Haekyu
    Das, Nilaksh
    Hohman, Fred
    Kahng, Minsuk
    Chau, Duen Horng
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1396 - 1406
  • [49] Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
    Kattenborn, Teja
    Leitloff, Jens
    Schiefer, Felix
    Hinz, Stefan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 173 : 24 - 49
  • [50] A-CNN: Annularly Convolutional Neural Networks on Point Clouds
    Komarichev, Artem
    Zhong, Zichun
    Hua, Jing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7413 - 7422