Data Descriptor: The public cancer radiology imaging collections of The Cancer Imaging Archive

被引:80
|
作者
Prior, Fred [1 ]
Smith, Kirk [1 ]
Sharma, Ashish [2 ]
Kirby, Justin [3 ]
Tarbox, Lawrence [1 ]
Clark, Ken [4 ]
Bennett, William [1 ]
Nolan, Tracy [1 ]
Freymann, John [3 ]
机构
[1] Univ Arkansas Med Sci, Little Rock, AR 72205 USA
[2] Emory Univ, Atlanta, GA 30322 USA
[3] Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Frederick, MD 20892 USA
[4] Washington Univ, Sch Med, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
TUMOR CHANGE MEASUREMENT; TRUTH DATA; CT SCANS; LUNG-CANCER; THERAPY; RESOURCE; ERROR; REPRODUCIBILITY; COLONOGRAPHY; VARIABILITY;
D O I
10.1038/sdata.2017.124
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Cancer Imaging Archive (TCIA) is the U.S. National Cancer Institute's repository for cancer imaging and related information. TCIA contains 30.9 million radiology images representing data collected from approximately 37,568 subjects. This data is organized into collections by tumor-type with many collections also including analytic results or clinical data. TCIA staff carefully de-identify and curate all incoming collections prior to making the information available via web browser or programmatic interfaces. Each published collection within TCIA is assigned a Digital Object Identifier that references the collection. Additionally, researchers who use TCIA data may publish the subset of information used in their analysis by requesting a TCIA generated Digital Object Identifier. This data descriptor is a review of a selected subset of existing publicly available TCIA collections. It outlines the curation and publication methods employed by TCIA and makes available 15 collections of cancer imaging data.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Radiomics Prediction of EGFR Status in Lung Cancer-Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
    Lu, Lin
    Sun, Shawn H.
    Yang, Hao
    Linning, E.
    Guo, Pingzhen
    Schwartz, Lawrence H.
    Zhao, Binsheng
    TOMOGRAPHY, 2020, 6 (02) : 223 - 230
  • [22] The image and data archive at the laboratory of neuro imaging
    Neu, Scott C.
    Crawford, Karen L.
    Toga, Arthur W.
    FRONTIERS IN NEUROINFORMATICS, 2023, 17
  • [23] The Image and Data Archive at the Laboratory of Neuro Imaging
    Crawford, Karen L.
    Neu, Scott C.
    Toga, Arthur W.
    NEUROIMAGE, 2016, 124 : 1080 - 1083
  • [24] Regional variations in US cancer imaging data: a warning for imaging overuse
    Makarov, Danil V.
    FUTURE ONCOLOGY, 2015, 11 (22) : 3057 - 3060
  • [25] Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology
    Cook G.J.R.
    Azad G.
    Padhani A.R.
    Clinical and Translational Imaging, 2016, 4 (6) : 439 - 447
  • [26] Imaging in breast cancer – breast cancer imaging revisited
    David Mankoff
    Breast Cancer Research, 7
  • [27] Imaging in breast cancer - breast cancer imaging revisited
    Mankoff, D
    BREAST CANCER RESEARCH, 2005, 7 (06) : 276 - 278
  • [28] MOLECULAR PHYSIOLOGY OF CONTRAST ENHANCEMENT IN GLIOBLASTOMAS: AN ANALYSIS OF THE CANCER IMAGING ARCHIVE (TCIA)
    Alattar, Ali
    Treiber, Jeffrey
    Steed, Tyler
    Patel, Kunal
    Brandel, Michael
    Dale, Anders
    Carter, Bob
    Chen, Clark
    NEURO-ONCOLOGY, 2018, 20 : 181 - 181
  • [29] Molecular physiology of contrast enhancement in glioblastomas: An analysis of The Cancer Imaging Archive (TCIA)
    Treiber, Jeffrey M.
    Steed, Tyler C.
    Brandel, Michael G.
    Patel, Kunal S.
    Dale, Anders M.
    Carter, Bob S.
    Chen, Clark C.
    JOURNAL OF CLINICAL NEUROSCIENCE, 2018, 55 : 86 - 92
  • [30] Imaging cancer
    Chemistry and Industry (London), 1998, (18):