A combined forecasting method for short term load forecasting based on random forest and artificial neural network

被引:0
|
作者
Yuan, Chunming [1 ]
Chi, Yuanying [1 ]
Li, Xiaojing [2 ]
机构
[1] Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
[2] Gansu Elect Power Co, State Grid Control Ctr, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1088/1755-1315/252/3/032072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electric energy is closely related to people's life, in recent years, the construction of smart grid has already been proposed. Short-term load forecasting is a research hotspot in the process of smart grid. In this paper, we proposed a combined forecasting method based on random forest and artificial neural network, the final result is the weighted sum of the two single models, and the weight of each single model is obtained by the least square method. The data of experiment is the load data of a power plant in Hunan province from 2012 to 2017, and the corresponding weather information, the sampling granularity of the data is 15 minutes. The combined model we proposed can combine the advantages of random forest and artificial neural network, and the result of experiment shows that the combined model improves the accuracy of short term load forecasting.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Short Term Hourly Load Forecasting using combined artificial neural networks
    Subbaraj, P.
    Rajasekaran, V.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, 2007, : 155 - +
  • [22] Short Term Load Forecasting by Artificial Neural Networkk
    Ray, Papia
    Mishra, Debani Prasad
    Lenka, Rajesh Kumar
    2016 INTERNATIONAL CONFERENCE ON NEXT GENERATION INTELLIGENT SYSTEMS (ICNGIS), 2016, : 10 - 15
  • [23] Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region
    Hayati, Mohsen
    Shirvany, Yazdan
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 280 - 284
  • [24] Short-Term Load Demand Forecasting Using Artificial Neural Network
    Adeyemi-Kayode, Temitope M.
    Orovwode, Hope E.
    Adoghe, Anthony U.
    Misra, Sanjay
    Agrawal, Akshat
    Lecture Notes in Electrical Engineering, 2023, 1001 LNEE : 165 - 177
  • [25] Artificial neural network based load forecasting
    Momoh, JA
    Wang, YC
    Elfayoumy, M
    SMC '97 CONFERENCE PROCEEDINGS - 1997 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: CONFERENCE THEME: COMPUTATIONAL CYBERNETICS AND SIMULATION, 1997, : 3443 - 3451
  • [26] HYBRID ARTIFICIAL NEURAL NETWORK SYSTEM FOR SHORT-TERM LOAD FORECASTING
    Ilic, Slobodan A.
    Vukmirovic, Srdjan M.
    Erdeljan, Aleksandar M.
    Kulic, Filip J.
    THERMAL SCIENCE, 2012, 16 : S215 - S224
  • [27] Short-term load forecasting with artificial neural network and fuzzy logic
    Ma, WX
    Bai, XM
    Mu, LS
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 1101 - 1104
  • [28] Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Calavia, Lorena
    Carro, Belen
    Sanchez-Esguevillas, Antonio
    Perez, Francisco
    Fernandez, Angel
    Lloret, Jaime
    ENERGIES, 2014, 7 (03) : 1576 - 1598
  • [29] A Comparative Study of Artificial Neural Network and ANFIS for Short Term Load Forecasting
    Cevik, Hasan Huseyin
    Cunkas, Mehmet
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2014,
  • [30] A Review of Short Term Load Forecasting using Artificial Neural Network Models
    Baliyan, Arjun
    Gaurav, Kumar
    Mishra, Sudhansu Kumar
    INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015), 2015, 48 : 121 - 125