PETROV-GALERKIN AND SPECTRAL COLLOCATION METHODS FOR DISTRIBUTED ORDER DIFFERENTIAL EQUATIONS

被引:61
|
作者
Kharazmi, Ehsan [1 ,2 ]
Zayernouri, Mohsen [1 ,2 ]
Karniadakis, George Em [3 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2017年 / 39卷 / 03期
关键词
distributed Sobolev space; distributed bilinear forms; modal basis; nodal basis; fractional Lagrange interpolants; spectral convergence; stability analysis; error analysis; uncertainty quantification; TIME-FRACTIONAL DIFFUSION; NUMERICAL-SOLUTION; ELEMENT METHODS; EXTRAPOLATION METHOD; APPROXIMATION; SCHEMES; STABILITY; ACCURACY;
D O I
10.1137/16M1073121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Distributed order fractional operators offer a rigorous tool for mathematical modelling of multiphysics phenomena, where the differential orders are distributed over a range of values rather than being just a fixed integer/fraction as in standard/fractional ODEs/PDEs. We develop two spectrally accurate schemes, namely, a Petrov-Galerkin spectral method and a spectral collocation method for distributed order fractional differential equations. These schemes are developed based on the fractional Sturm-Liouville eigen-problems (FSLPs) [M. Zayernouri and G. E. Karniadakis, T. Comput. Phys., 47 (2013), pp. 2108-2131]. In the Petrov-Galerkin method, we employ fractional (nonpolynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind, while we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind. We define the underlying distributed Sobolev space and the associated norms, where we carry out the corresponding discrete stability and error analyses of the proposed scheme. In the collocation scheme, we employ fractional (nonpolynomial) Lagrange interpolants satisfying the Kronecker delta property at the collocation points. Subsequently, we obtain the corresponding distributed differentiation matrices to be employed in the discretization of the strong problem. We perform systematic numerical tests to demonstrate the efficiency and conditioning of each method.
引用
收藏
页码:A1003 / A1037
页数:35
相关论文
共 50 条
  • [31] On multiscale methods in Petrov-Galerkin formulation
    Elfverson, Daniel
    Ginting, Victor
    Henning, Patrick
    NUMERISCHE MATHEMATIK, 2015, 131 (04) : 643 - 682
  • [32] Nonlinear discontinuous Petrov-Galerkin methods
    Carstensen, C.
    Bringmann, P.
    Hellwig, F.
    Wriggers, P.
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 529 - 561
  • [33] Discrete wavelet Petrov-Galerkin methods
    Chen, ZY
    Micchelli, CA
    Xu, YS
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (01) : 1 - 28
  • [34] A low-order discontinuous Petrov-Galerkin method for the Stokes equations
    Carstensen, Carsten
    Puttkammer, Sophie
    NUMERISCHE MATHEMATIK, 2018, 140 (01) : 1 - 34
  • [35] A wavelet Petrov-Galerkin method for solving integro-differential equations
    Maleknejad, K.
    Rabbani, M.
    Aghazadeh, N.
    Karami, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (09) : 1572 - 1590
  • [36] Petrov-Galerkin methods for systems of nonlinear reaction-diffusion equations
    Wang, YM
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 96 (2-3) : 209 - 236
  • [37] A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations
    Wenting Mao
    Yanping Chen
    Huasheng Wang
    Numerical Algorithms, 2022, 89 : 1095 - 1127
  • [38] A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations
    Mao, Wenting
    Chen, Yanping
    Wang, Huasheng
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1095 - 1127
  • [40] Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    Elsheikh, A. H.
    Du, J.
    Xiao, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 540 - 559