A splitting bundle approach for non-smooth non-convex minimization

被引:15
|
作者
Fuduli, A. [1 ]
Gaudioso, M. [2 ]
Nurminski, E. A. [3 ,4 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, I-87036 Arcavacata Di Rende, Italy
[2] Univ Calabria, Dipartimento Ingn Informat Modellist Elettron & S, I-87036 Arcavacata Di Rende, Italy
[3] Far Eastern Fed Univ, Vladivostok, Russia
[4] Inst Automat & Control Problems Far Eastern Branc, Vladivostok, Russia
关键词
90C26; 65K05; bundle methods; non-convex optimization; non-smooth optimization; GRADIENT SAMPLING ALGORITHM; CONVEX MINIMIZATION; PROXIMITY CONTROL; OPTIMIZATION; CONVERGENCE; CLASSIFICATION; APPROXIMATIONS; STRATEGY; PROGRAMS;
D O I
10.1080/02331934.2013.840625
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a bundle-type method for minimizing non-convex non-smooth functions. Our approach is based on the partition of the bundle into two sets, taking into account the local convex or concave behaviour of the objective function. Termination at a point satisfying an approximate stationarity condition is proved and numerical results are provided. © 2013 Taylor & Francis.
引用
收藏
页码:1131 / 1151
页数:21
相关论文
共 50 条
  • [31] Learning an Alternating Bergman Network for Non-convex and Non-smooth Optimization Problems
    Wang, Yiyang
    Liu, Risheng
    Su, Zhixun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 11 - 27
  • [32] Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization
    Metel, Michael R.
    Takeda, Akiko
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [33] A stochastic alternating direction method of multipliers for non-smooth and non-convex optimization
    Bian, Fengmiao
    Liang, Jingwei
    Zhang, Xiaoqun
    INVERSE PROBLEMS, 2021, 37 (07)
  • [34] Stochastic Proximal Methods for Non-Smooth Non-Convex Constrained Sparse Optimization
    Metel, Michael R.
    Takeda, Akiko
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [35] A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning
    Mert Gürbüzbalaban
    Andrzej Ruszczyński
    Landi Zhu
    Journal of Optimization Theory and Applications, 2022, 194 : 1014 - 1041
  • [36] Mathematical programming formulations for non-smooth and non-convex electricity dispatch problems
    Yang, Lingjian
    Fraga, Eric S.
    Papageorgiou, Lazaros G.
    ELECTRIC POWER SYSTEMS RESEARCH, 2013, 95 : 302 - 308
  • [37] Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains
    Apel, Thomas
    Nicaise, Serge
    Pfefferer, Johannes
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (05) : 1433 - 1454
  • [38] A Stochastic Subgradient Method for Distributionally Robust Non-convex and Non-smooth Learning
    Gurbuzbalaban, Mert
    Ruszczynski, Andrzej
    Zhu, Landi
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 1014 - 1041
  • [39] Inertial alternating direction method of multipliers for non-convex non-smooth optimization
    Hien, Le Thi Khanh
    Phan, Duy Nhat
    Gillis, Nicolas
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 247 - 285
  • [40] Stochastic proximal methods for non-smooth non-convex constrained sparse optimization
    Metel, Michael R.
    Takeda, Akiko
    Journal of Machine Learning Research, 2021, 22