Population variation in genetic programming

被引:17
|
作者
Kouchakpour, Peyman [1 ]
Zaknich, Anthony [1 ]
Braunl, Thomas [1 ]
机构
[1] Univ Western Australia, Sch Elect & Comp Engn, Nedlands, WA 6009, Australia
关键词
genetic programming; computational effort; average number of evaluations; convergence; population variation;
D O I
10.1016/j.ins.2007.02.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new population variation approach is proposed, whereby the size of the population is systematically varied during the execution of the genetic programming process with the aim of reducing the computational effort compared with standard genetic programming (SGP). Various schemes for altering population size under this proposal are investigated using a comprehensive range of standard problems to determine whether the nature of the "population variation", i.e. the way the population is varied during the search, has any significant impact on GP performance. The initial population size is varied in relation to the initial population size of the SGP such that the worst case computational effort is never greater than that of the SGP. It is subsequently shown that the proposed population variation schemes do have the capacity to provide solutions at a lower computational cost compared with the SGP. Crown Copyright (c) 2007 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:3438 / 3452
页数:15
相关论文
共 50 条
  • [31] A POPULATION BASED STUDY OF EVOLUTIONARY DYNAMICS IN GENETIC PROGRAMMING
    Almal, A. A.
    MacLean, C. D.
    Worzel, W. P.
    GENETIC PROGRAMMING THEORY AND PRACTICE VI, 2009, : 19 - 28
  • [32] The Role of Population Size in Rate of Evolution in Genetic Programming
    Hu, Ting
    Banzhaf, Wolfgang
    GENETIC PROGRAMMING, 2009, 5481 : 85 - 96
  • [33] Genetic Programming with Multi-Layered Population Structure
    Hasegawa, Taku
    Mori, Naoki
    Matsumoto, Keinosuke
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 229 - 230
  • [34] Population diversity and inheritance in genetic programming for symbolic regression
    Burlacu, Bogdan
    Yang, Kaifeng
    Affenzeller, Michael
    NATURAL COMPUTING, 2024, 23 (03) : 531 - 566
  • [35] The influence of mutation on population dynamics in multiobjective genetic programming
    Khaled Badran
    Peter I. Rockett
    Genetic Programming and Evolvable Machines, 2010, 11 : 5 - 33
  • [36] Using very small population sizes in genetic programming
    Ashlock, Wendy
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 319 - 326
  • [37] Relationship of genetic variation to population size in wildlife
    Frankham, R
    CONSERVATION BIOLOGY, 1996, 10 (06) : 1500 - 1508
  • [38] Genetic variation and population structure in Native Americans
    Wang, Sijia
    Lewis, Cecil M., Jr.
    Jakobsson, Mattias
    Ramachandran, Sohini
    Ray, Nicolas
    Bedoya, Gabriel
    Rojas, Winston
    Parra, Maria V.
    Molina, Julio A.
    Gallo, Carla
    Mazzotti, Guido
    Poletti, Giovanni
    Hill, Kim
    Hurtado, Ana M.
    Labuda, Damian
    Klitz, William
    Barrantes, Ramiro
    Bortolini, Maria Catira
    Salzano, Francisco M.
    Petzl-Erler, Maria Luiza
    Tsuneto, Luiza T.
    Llop, Elena
    Rothhammer, Francisco
    Excoffier, Laurent
    Feldman, Marcus W.
    Rosenberg, Noah A.
    Ruiz-Linares, Andres
    PLOS GENETICS, 2007, 3 (11): : 2049 - 2067
  • [39] Population structure and genetic variation in Nectria fuckeliana
    Vasiliauskas, R
    Stenlid, J
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1997, 75 (10): : 1707 - 1713
  • [40] Genetic Variation among Pharmacogenes in the Sardinian Population
    Idda, Maria Laura
    Zoledziewska, Magdalena
    Urru, Silvana Anna Maria
    McInnes, Gregory
    Bilotta, Alice
    Nuvoli, Viola
    Lodde, Valeria
    Orru, Sandro
    Schlessinger, David
    Cucca, Francesco
    Floris, Matteo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)