Geometry of generalized Ricci-type solitons on a class of Riemannian manifolds

被引:3
|
作者
Kumara, H. Aruna [1 ]
Naik, Devaraja Mallesha [2 ]
Venkatesha, V. [1 ]
机构
[1] Kuvempu Univ, Dept Math, Shankaraghatta 577451, Karnataka, India
[2] CHRIST Deemed Univ, Dept Math, Bengaluru 560029, India
关键词
Ricci soliton; Generalized Ricci-type soliton; Concurrent vector field; Recurrent vector field;
D O I
10.1016/j.geomphys.2022.104506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the notion of generalized Ricci-type soliton is introduced and its geometrical relevance on Riemannian CR-manifold is established. Particularly, it is shown that a Riemannian CR-manifold is Einstein when its metric is a generalized Ricci-type soliton. Next, it has been proved that a Riemannian CR-manifold is Einstein-like, when its metric is a generalized gradient Ricci-type almost soliton (or generalized Ricci-type almost soliton for which the soliton vector field is collinear to the CR-vector field). Finally, we present an example of generalized Ricci-type solitons which illustrate our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A class of Riemannian manifolds that pinch when evolved by Ricci flow
    Simon, M
    MANUSCRIPTA MATHEMATICA, 2000, 101 (01) : 89 - 114
  • [32] Cosmology with Ricci-type dark energy
    Zimdahl, W.
    Fabris, J. C.
    del Campo, S.
    Herrera, R.
    II COSMOSUR: COSMOLOGY AND GRAVITATION IN THE SOUTHERN CONE, 2015, 1647 : 13 - 18
  • [33] Notes on K-contact manifolds as generalized Ricci solitons
    Mekki, Mohammed El Amine
    Cherif, Ahmed Mohammed
    AFRIKA MATEMATIKA, 2023, 34 (02)
  • [34] Ricci Solitons and Killing Fields on Generalized Cahen—Wallach Manifolds
    D. N. Oskorbin
    E. D. Rodionov
    Siberian Mathematical Journal, 2019, 60 : 911 - 915
  • [35] Characterizations of Ricci-Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Patra, Dhriti Sundar
    Ali, Akram
    Mofarreh, Fatemah
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [36] Notes on K-contact manifolds as generalized Ricci solitons
    Mohammed El Amine Mekki
    Ahmed Mohammed Cherif
    Afrika Matematika, 2023, 34
  • [37] Generalized η-Ricci Solitons on Kenmotsu Manifolds associated to the General Connection
    Azami, Shahroud
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (02): : 261 - 270
  • [38] Ricci Solitons on Riemannian Hypersurfaces Arising from Closed Conformal Vector Fields in Riemannian and Lorentzian Manifolds
    Alshehri, Norah
    Guediri, Mohammed
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [39] EIGHTY ONE RICCI-TYPE IDENTITIES
    Vesic, Nenad O.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 1059 - 1078
  • [40] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458