COMMUTING AUTOMORPHISMS OF THE GROUP CONSISTING OF THE UNIT UPPER TRIANGULAR MATRICES
被引:0
|
作者:
Chen, Zhengxin
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Chen, Zhengxin
[1
,2
]
Zhu, Chundan
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
Zhu, Chundan
[1
]
机构:
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
Unit upper triangular matrices;
commuting automorphisms;
matrix groups;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a group, an automorphism phi : G -> G is called a commuting automorphism, if for all x is an element of G, phi(x)x = x phi(x). Let U-n (F) be the group consisting of all n x n unit upper triangular matrices over a field F with characteristic char(F) not equal 2. In this paper, we prove that if n >= 4, a map phi : U-n (F) -> U-n (F) is a commuting automorphism of U-n (F) if and only if it is a central automorphism of U-n(F). Moreover, the set of the commuting automorphisms of U-n(F) is a normal subgroup of the automorphism group Aut(U-n(F)).